#! /usr/bin/env python
# -*- coding: utf-8 -*-
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Classes and Methods for working with tree reconciliation, fitting, embedding,
contained/containing etc.
"""
import dendropy
from dendropy.model import coalescent
[docs]
class ContainingTree(dendropy.Tree):
"""
A "containing tree" is a (usually rooted) tree data structure within which
other trees are "contained". For example, species trees and their contained
gene trees; host trees and their contained parasite trees; biogeographical
"area" trees and their contained species or taxon trees.
"""
def __init__(self,
containing_tree,
contained_taxon_namespace,
contained_to_containing_taxon_map,
contained_trees=None,
fit_containing_edge_lengths=True,
collapse_empty_edges=True,
ultrametricity_precision=False,
ignore_root_deep_coalescences=True,
**kwargs):
"""
__init__ converts ``self`` to ContainingTree class, embedding the trees
given in the list, ``contained_trees.``
Mandatory Arguments:
``containing_tree``
A |Tree| or |Tree|-like object that describes the topological
constraints or conditions of the containing tree (e.g., species,
host, or biogeographical area trees).
``contained_taxon_namespace``
A |TaxonNamespace| object that will be used to manage the taxa of
the contained trees.
``contained_to_containing_taxon_map``
A |TaxonNamespaceMapping| object mapping |Taxon| objects in the
contained |TaxonNamespace| to corresponding |Taxon| objects in the
containing tree.
Optional Arguments:
``contained_trees``
An iterable container of |Tree| or |Tree|-like objects that
will be contained into ``containing_tree``; e.g. gene or
parasite trees.
``fit_containing_edge_lengths``
If |True| [default], then the branch lengths of
``containing_tree`` will be adjusted to fit the contained tree
as they are added. Otherwise, the containing tree edge lengths
will not be changed.
``collapse_empty_edges``
If |True| [default], after edge lengths are adjusted,
zero-length branches will be collapsed.
``ultrametricity_precision``
If |False| [default], then trees will not be checked for
ultrametricity. Otherwise this is the threshold within which
all node to tip distances for sister nodes must be equal.
``ignore_root_deep_coalescences``
If |True| [default], then deep coalescences in the root will
not be counted.
Other Keyword Arguments: Will be passed to Tree().
"""
if "taxon_namespace" not in kwargs:
kwargs["taxon_namespace"] = containing_tree.taxon_namespace
dendropy.Tree.__init__(self,
containing_tree,
taxon_namespace=containing_tree.taxon_namespace)
self.original_tree = containing_tree
for edge in self.postorder_edge_iter():
edge.head_contained_edges = {}
edge.tail_contained_edges = {}
edge.containing_taxa = set()
edge.contained_taxa = set()
self._contained_taxon_namespace = contained_taxon_namespace
self._contained_to_containing_taxon_map = None
self._contained_trees = None
self.contained_to_containing_taxon_map = contained_to_containing_taxon_map
self.fit_containing_edge_lengths = fit_containing_edge_lengths
self.collapse_empty_edges = collapse_empty_edges
self.ultrametricity_precision = ultrametricity_precision
self.ignore_root_deep_coalescences = ignore_root_deep_coalescences
if contained_trees:
self.contained_trees = contained_trees
if self.contained_trees:
self.rebuild(rebuild_taxa=False)
@property
def contained_taxon_namespace(self):
if self._contained_taxon_namespace is None:
self._contained_taxon_namespace = dendropy.TaxonNamespace()
return self._contained_taxon_namespace
@contained_taxon_namespace.setter
def contained_taxon_namespace(self, taxon_namespace):
self._contained_taxon_namespace = taxon_namespace
@property
def contained_to_containing_taxon_map(self):
return self._contained_to_containing_taxon_map
@contained_to_containing_taxon_map.setter
def contained_to_containing_taxon_map(self, contained_to_containing_taxon_map):
"""
Sets mapping of |Taxon| objects of the genes/parasite/etc. to that of
the population/species/host/etc.
Creates mapping (e.g., species to genes) and decorates edges of self
with sets of both containing |Taxon| objects and the contained
|Taxon| objects that map to them.
"""
if isinstance(contained_to_containing_taxon_map, dendropy.TaxonNamespaceMapping):
if self._contained_taxon_namespace is not contained_to_containing_taxon_map.domain_taxon_namespace:
raise ValueError("Domain TaxonNamespace of TaxonNamespaceMapping ('domain_taxon_namespace') not the same as 'contained_taxon_namespace' TaxonNamespace")
self._contained_to_containing_taxon_map = contained_to_containing_taxon_map
else:
self._contained_to_containing_taxon_map = dendropy.TaxonNamespaceMapping(
mapping_dict=contained_to_containing_taxon_map,
domain_taxon_namespace=self.contained_taxon_namespace,
range_taxon_namespace=self.taxon_namespace)
self.build_edge_taxa_sets()
@property
def contained_trees(self):
if self._contained_trees is None:
self._contained_trees = dendropy.TreeList(taxon_namespace=self._contained_taxon_namespace)
return self._contained_trees
@contained_trees.setter
def contained_trees(self, trees):
if hasattr(trees, 'taxon_namespace'):
if self._contained_taxon_namespace is None:
self._contained_taxon_namespace = trees.taxon_namespace
elif self._contained_taxon_namespace is not trees.taxon_namespace:
raise ValueError("'contained_taxon_namespace' of ContainingTree is not the same TaxonNamespace object of 'contained_trees'")
self._contained_trees = dendropy.TreeList(trees, taxon_namespace=self._contained_taxon_namespace)
if self._contained_taxon_namespace is None:
self._contained_taxon_namespace = self._contained_trees.taxon_namespace
@property
def containing_to_contained_taxa_map(self):
return self._contained_to_containing_taxon_map.reverse
[docs]
def clear(self):
"""
Clears all contained trees and mapped edges.
"""
if hasattr(self._contained_to_containing_taxon_map, "domain_taxa"):
self.contained_trees = dendropy.TreeList(taxon_namespace=self._contained_to_containing_taxon_map.domain_taxa)
else:
self.contained_trees = dendropy.TreeList(taxon_namespace=self.taxon_namespace)
self.clear_contained_edges()
[docs]
def clear_contained_edges(self):
"""
Clears all contained mapped edges.
"""
for edge in self.postorder_edge_iter():
edge.head_contained_edges = {}
edge.tail_contained_edges = {}
[docs]
def fit_edge_lengths(self, contained_trees):
"""
Recalculate node ages / edge lengths of containing tree to accomodate
contained trees.
"""
# set the ages
for node in self.postorder_node_iter():
if node.is_internal():
disjunct_leaf_set_list_split_bitmasks = []
for i in node.child_nodes():
disjunct_leaf_set_list_split_bitmasks.append(self.taxon_namespace.taxa_bitmask(taxa=i.edge.containing_taxa))
min_age = float('inf')
for et in contained_trees:
min_age = self._find_youngest_intergroup_age(et, disjunct_leaf_set_list_split_bitmasks, min_age)
node.age = max( [min_age] + [cn.age for cn in node.child_nodes()] )
else:
node.age = 0
# set the corresponding edge lengths
self.set_edge_lengths_from_node_ages()
# collapse 0-length branches
if self.collapse_empty_edges:
self.collapse_unweighted_edges()
[docs]
def rebuild(self, rebuild_taxa=True):
"""
Recalculate edge taxa sets, node ages / edge lengths of containing
tree, and embed edges of contained trees.
"""
if rebuild_taxa:
self.build_edge_taxa_sets()
if self.fit_containing_edge_lengths:
self.fit_edge_lengths(self.contained_trees)
self.clear_contained_edges()
for et in self.contained_trees:
self.embed_tree(et)
[docs]
def embed_tree(self, contained_tree):
"""
Map edges of contained tree into containing tree (i.e., self).
"""
if self.seed_node.age is None:
self.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
if contained_tree not in self.contained_trees:
self.contained_trees.append(contained_tree)
if self.fit_containing_edge_lengths:
self.fit_edge_lengths(self.contained_trees)
if contained_tree.seed_node.age is None:
contained_tree.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
contained_leaves = contained_tree.leaf_nodes()
taxon_to_contained = {}
for nd in contained_leaves:
containing_taxon = self.contained_to_containing_taxon_map[nd.taxon]
x = taxon_to_contained.setdefault(containing_taxon, set())
x.add(nd.edge)
for containing_edge in self.postorder_edge_iter():
if containing_edge.is_terminal():
containing_edge.head_contained_edges[contained_tree] = taxon_to_contained[containing_edge.head_node.taxon]
else:
containing_edge.head_contained_edges[contained_tree] = set()
for nd in containing_edge.head_node.child_nodes():
containing_edge.head_contained_edges[contained_tree].update(nd.edge.tail_contained_edges[contained_tree])
if containing_edge.tail_node is None:
if containing_edge.length is not None:
target_age = containing_edge.head_node.age + containing_edge.length
else:
# assume all coalesce?
containing_edge.tail_contained_edges[contained_tree] = set([contained_tree.seed_node.edge])
continue
else:
target_age = containing_edge.tail_node.age
containing_edge.tail_contained_edges[contained_tree] = set()
for contained_edge in containing_edge.head_contained_edges[contained_tree]:
if contained_edge.tail_node is not None:
remaining = target_age - contained_edge.tail_node.age
elif contained_edge.length is not None:
remaining = target_age - (contained_edge.head_node.age + contained_edge.length)
else:
continue
while remaining > 0:
if contained_edge.tail_node is not None:
contained_edge = contained_edge.tail_node.edge
else:
if contained_edge.length is not None and (remaining - contained_edge.length) <= 0:
contained_edge = None
remaining = 0
break
else:
remaining = 0
break
if contained_edge and remaining > 0:
remaining -= contained_edge.length
if contained_edge is not None:
containing_edge.tail_contained_edges[contained_tree].add(contained_edge)
[docs]
def build_edge_taxa_sets(self):
"""
Rebuilds sets of containing and corresponding contained taxa at each
edge.
"""
for edge in self.postorder_edge_iter():
if edge.is_terminal():
edge.containing_taxa = set([edge.head_node.taxon])
else:
edge.containing_taxa = set()
for i in edge.head_node.child_nodes():
edge.containing_taxa.update(i.edge.containing_taxa)
edge.contained_taxa = set()
for t in edge.containing_taxa:
edge.contained_taxa.update(self.containing_to_contained_taxa_map[t])
[docs]
def num_deep_coalescences(self):
"""
Returns total number of deep coalescences of the contained trees.
"""
return sum(self.deep_coalescences().values())
[docs]
def deep_coalescences(self):
"""
Returns dictionary where the contained trees are keys, and the number of
deep coalescences corresponding to the tree are values.
"""
dc = {}
for tree in self.contained_trees:
for edge in self.postorder_edge_iter():
if edge.tail_node is None and self.ignore_root_deep_coalescences:
continue
try:
dc[tree] += len(edge.tail_contained_edges[tree]) - 1
except KeyError:
dc[tree] = len(edge.tail_contained_edges[tree]) - 1
return dc
[docs]
def embed_contained_kingman(self,
edge_pop_size_attr='pop_size',
default_pop_size=1,
label=None,
rng=None,
use_expected_tmrca=False):
"""
Simulates, *embeds*, and returns a "censored" (Kingman) neutral coalescence tree
conditional on self.
``rng``
Random number generator to use. If |None|, the default will
be used.
``edge_pop_size_attr``
Name of attribute of self's edges that specify the population
size. If this attribute does not exist, then the population
size is taken to be 1.
Note that all edge-associated taxon sets must be up-to-date (otherwise,
``build_edge_taxa_sets()`` should be called).
"""
et = self.simulate_contained_kingman(
edge_pop_size_attr=edge_pop_size_attr,
default_pop_size=default_pop_size,
label=label,
rng=rng,
use_expected_tmrca=use_expected_tmrca)
self.embed_tree(et)
return et
[docs]
def simulate_contained_kingman(self,
edge_pop_size_attr='pop_size',
default_pop_size=1,
label=None,
rng=None,
use_expected_tmrca=False):
"""
Simulates and returns a "censored" (Kingman) neutral coalescence tree
conditional on self.
``rng``
Random number generator to use. If |None|, the default will
be used.
``edge_pop_size_attr``
Name of attribute of self's edges that specify the population
size. If this attribute does not exist, then the population
size is taken to be 1.
Each coalescent tree terminal node will have a ``container_tree_node``
attribute added that references the node on the container tree from
which it was sampled.
Note that all edge-associated taxon sets must be up-to-date (otherwise,
``build_edge_taxa_sets()`` should be called), and that the tree
is *not* added to the set of contained trees. For the latter, call
``embed_contained_kingman``.
"""
# Dictionary that maps nodes of containing tree to list of
# corresponding nodes on gene tree, initially populated with leaf
# nodes.
contained_nodes = {}
for nd in self.leaf_node_iter():
contained_nodes[nd] = []
for gt in nd.edge.contained_taxa:
gn = dendropy.Node(taxon=gt)
contained_nodes[nd].append(gn)
gn.container_tree_node = nd
# Generate the tree structure
for edge in self.postorder_edge_iter():
if edge.head_node.parent_node is None:
# root: run unconstrained coalescence until just one gene node
# remaining
if hasattr(edge, edge_pop_size_attr):
pop_size = getattr(edge, edge_pop_size_attr)
else:
pop_size = default_pop_size
if len(contained_nodes[edge.head_node]) > 1:
final = coalescent.coalesce_nodes(nodes=contained_nodes[edge.head_node],
pop_size=pop_size,
period=None,
rng=rng,
use_expected_tmrca=use_expected_tmrca)
else:
final = contained_nodes[edge.head_node]
else:
# run until next coalescence event, as determined by this edge
# size.
if hasattr(edge, edge_pop_size_attr):
pop_size = getattr(edge, edge_pop_size_attr)
else:
pop_size = default_pop_size
remaining = coalescent.coalesce_nodes(nodes=contained_nodes[edge.head_node],
pop_size=pop_size,
period=edge.length,
rng=rng,
use_expected_tmrca=use_expected_tmrca)
try:
contained_nodes[edge.tail_node].extend(remaining)
except KeyError:
contained_nodes[edge.tail_node] = remaining
# Create and return the full tree
contained_tree = dendropy.Tree(taxon_namespace=self.contained_taxon_namespace, label=label)
contained_tree.seed_node = final[0]
contained_tree.is_rooted = True
return contained_tree
def _find_youngest_intergroup_age(self, contained_tree, disjunct_leaf_set_list_split_bitmasks, starting_min_age=None):
"""
Find the age of the youngest MRCA of disjunct leaf sets.
"""
if starting_min_age is None:
starting_min_age = float('inf')
if contained_tree.seed_node.age is None:
contained_tree.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
for nd in contained_tree.ageorder_node_iter(include_leaves=False):
if nd.age > starting_min_age:
break
prev_intersections = False
for bm in disjunct_leaf_set_list_split_bitmasks:
if bm & nd.edge.split_bitmask:
if prev_intersections:
return nd.age
prev_intersections = True
return starting_min_age
[docs]
def write_as_mesquite(self, out, **kwargs):
"""
For debugging purposes, write out a Mesquite-format file.
"""
from dendropy.dataio import nexuswriter
nw = nexuswriter.NexusWriter(**kwargs)
nw.is_write_block_titles = True
out.write("#NEXUS\n\n")
nw._write_taxa_block(out, self.taxon_namespace)
out.write('\n')
nw._write_taxa_block(out, self.contained_trees.taxon_namespace)
if self.contained_trees.taxon_namespace.label:
domain_title = self.contained_trees.taxon_namespace.label
else:
domain_title = self.contained_trees.taxon_namespace.oid
contained_taxon_namespace = self.contained_trees.taxon_namespace
contained_label = self.contained_trees.label
out.write('\n')
self._contained_to_containing_taxon_map.write_mesquite_association_block(out)
out.write('\n')
nw._write_trees_block(out, dendropy.TreeList([self], taxon_namespace=self.taxon_namespace))
out.write('\n')
nw._write_trees_block(out, dendropy.TreeList(self.contained_trees, taxon_namespace=contained_taxon_namespace, label=contained_label))
out.write('\n')
[docs]
def reconciliation_discordance(gene_tree, species_tree):
"""
Given two trees (with splits encoded), this returns the number of gene
duplications implied by the gene tree reconciled on the species tree, based
on the algorithm described here:
Goodman, M. J. Czelnusiniak, G. W. Moore, A. E. Romero-Herrera, and
G. Matsuda. 1979. Fitting the gene lineage into its species lineage,
a parsimony strategy illustrated by cladograms constructed from globin
sequences. Syst. Zool. 19: 99-113.
Maddison, W. P. 1997. Gene trees in species trees. Syst. Biol. 46:
523-536.
This function requires that the gene tree and species tree *have the same
leaf set*. Note that for correct results,
(a) trees must be rooted (i.e., is_rooted = True)
(b) split masks must have been added as rooted (i.e., when
encode_splits was called, is_rooted must have been set to True)
"""
taxa_mask = species_tree.taxon_namespace.all_taxa_bitmask()
species_node_gene_nodes = {}
gene_node_species_nodes = {}
for gnd in gene_tree.postorder_node_iter():
gn_children = gnd.child_nodes()
if len(gn_children) > 0:
ssplit = 0
for gn_child in gn_children:
ssplit = ssplit | gene_node_species_nodes[gn_child].edge.leafset_bitmask
sanc = species_tree.mrca(start_node=species_tree.seed_node, leafset_bitmask=ssplit)
gene_node_species_nodes[gnd] = sanc
if sanc not in species_node_gene_nodes:
species_node_gene_nodes[sanc] = []
species_node_gene_nodes[sanc].append(gnd)
else:
gene_node_species_nodes[gnd] = species_tree.find_node(lambda x : x.taxon == gnd.taxon)
contained_gene_lineages = {}
for snd in species_tree.postorder_node_iter():
if snd in species_node_gene_nodes:
for gnd in species_node_gene_nodes[snd]:
for gnd_child in gnd.child_nodes():
sanc = gene_node_species_nodes[gnd_child]
p = sanc
while p is not None and p != snd:
if p.edge not in contained_gene_lineages:
contained_gene_lineages[p.edge] = 0
contained_gene_lineages[p.edge] += 1
p = p.parent_node
dc = 0
for v in contained_gene_lineages.values():
dc += v - 1
return dc
[docs]
def monophyletic_partition_discordance(tree, taxon_namespace_partition):
"""
Returns the number of deep coalescences on tree ``tree`` that would result
if the taxa in ``tax_sets`` formed K mutually-exclusive monophyletic groups,
where K = len(tax_sets)
``taxon_namespace_partition`` == TaxonNamespacePartition
"""
tax_sets = taxon_namespace_partition.subsets()
# from dendropy.model import parsimony
# taxon_state_sets_map = {}
# assert tree.taxon_namespace is taxon_namespace_partition.taxon_namespace
# for taxon in tree.taxon_namespace:
# taxon_state_sets_map[taxon] = [0 for i in range(len(tax_sets))]
# for idx, ts in enumerate(tax_sets):
# for taxon in ts:
# taxon_state_sets_map[taxon][idx] = 1
# for taxon in tree.taxon_namespace:
# taxon_state_sets_map[taxon] = [set([i]) for i in taxon_state_sets_map[taxon]]
# return parsimony.fitch_down_pass(
# postorder_nodes=tree.postorder_node_iter(),
# taxon_state_sets_map=taxon_state_sets_map
# )
dc_tree = dendropy.Tree()
dc_tree.taxon_namespace = dendropy.TaxonNamespace()
for t in range(len(tax_sets)):
dc_tree.taxon_namespace.add_taxon(dendropy.Taxon(label=str(t)))
def _get_dc_taxon(nd):
for idx, tax_set in enumerate(tax_sets):
if nd.taxon in tax_set:
return dc_tree.taxon_namespace[idx]
assert "taxon not found in partition: '%s'" % nd.taxon.label
src_dc_map = {}
for snd in tree.postorder_node_iter():
nnd = dendropy.Node()
src_dc_map[snd] = nnd
children = snd.child_nodes()
if len(children) == 0:
nnd.taxon = _get_dc_taxon(snd)
else:
taxa_set = []
for cnd in children:
dc_node = src_dc_map[cnd]
if len(dc_node.child_nodes()) > 1:
nnd.add_child(dc_node)
else:
ctax = dc_node.taxon
if ctax is not None and ctax not in taxa_set:
taxa_set.append(ctax)
del src_dc_map[cnd]
if len(taxa_set) > 1:
for t in taxa_set:
cnd = dendropy.Node()
cnd.taxon = t
nnd.add_child(cnd)
else:
if len(nnd.child_nodes()) == 0:
nnd.taxon = taxa_set[0]
elif len(taxa_set) == 1:
cnd = dendropy.Node()
cnd.taxon = taxa_set[0]
nnd.add_child(cnd)
dc_tree.seed_node = nnd
return len(dc_tree.leaf_nodes()) - len(tax_sets)