Source code for dendropy.model.discrete

#! /usr/bin/env python
# -*- coding: utf-8 -*-

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Models and modeling of discrete character evolution.
"""

import math
from dendropy.utility import GLOBAL_RNG
from dendropy.calculate import probability
import dendropy

############################################################################
## Character Evolution Modeling

[docs] class DiscreteCharacterEvolutionModel(object): "Base class for discrete character substitution models." def __init__(self, state_alphabet, stationary_freqs=None, rng=None): """ __init__ initializes the state_alphabet to define the character type on which this model acts. The objects random number generator will be ``rng`` or 'GLOBAL_RNG' """ self.state_alphabet = state_alphabet if rng is None: self.rng = GLOBAL_RNG else: self.rng = rng
[docs] def pmatrix(self, tlen, rate=1.0): """ Returns a matrix of nucleotide substitution probabilities. """ raise NotImplementedError
[docs] def simulate_descendant_states(self, ancestral_states, edge_length, mutation_rate=1.0, rng=None): """ Returns descendent sequence given ancestral sequence. """ if rng is None: rng = self.rng pmat = self.pmatrix(edge_length, mutation_rate) multi = probability.sample_multinomial desc_states = [] for state in ancestral_states: anc_state_idx = state.index desc_state_idx = multi(pmat[anc_state_idx], rng) desc_states.append(self.state_alphabet[desc_state_idx]) return desc_states
[docs] class DiscreteCharacterEvolver(object): "Evolves sequences on a tree." def __init__(self, seq_model=None, mutation_rate=None, seq_attr='sequences', seq_model_attr="seq_model", edge_length_attr="length", edge_rate_attr="mutation_rate", seq_label_attr='taxon'): "__init__ sets up meta-data dealing with object nomenclature and semantics." self.seq_model = seq_model self.mutation_rate = mutation_rate self.seq_attr = seq_attr self.seq_model_attr = seq_model_attr self.edge_length_attr = edge_length_attr self.edge_rate_attr = edge_rate_attr self.seq_label_attr = seq_label_attr
[docs] def evolve_states(self, tree, seq_len, root_states=None, simulate_root_states=True, in_place=True, rng=None): """ Appends a new sequence of length ``seq_len`` to a list at each node in ``tree``. The attribute name of this list in each node is given by ``seq_attr``. If ``seq_model`` is None, ``tree.seq_model`` or ``seq_model`` at each node must be specified. If ``in_place`` is False, the tree is copied first, otherwise original tree is modified. If ``root_states`` is given, this will be used as the sequence for the root. If not, and if ``simulate_root_states`` is True, then the sequence for the root will be drawn from the stationary distribution of the character model. """ if rng is None: rng = GLOBAL_RNG if not in_place: tree = tree.clone(1) # ==> taxon_namespace_scoped_copy() if self.seq_model is None: seq_model = getattr(tree, self.seq_model_attr, None) # loop through edges in preorder (root->tips) n_prev_seq = None # to mollify linter undefined variable warning for edge in tree.preorder_edge_iter(): node = edge.head_node if not hasattr(node, self.seq_attr): setattr(node, self.seq_attr, []) seq_list = getattr(node, self.seq_attr) if edge.tail_node: par = edge.tail_node assert n_prev_seq is not None if len(seq_list) != n_prev_seq: raise ValueError("'%s' length varies among nodes" % self.seq_attr) par_seq = getattr(par, self.seq_attr)[-1] seq_model = getattr(edge, self.seq_model_attr, None) or self.seq_model length = getattr(edge, self.edge_length_attr) mutation_rate = getattr(edge, self.edge_rate_attr, None) or self.mutation_rate seq_list.append(seq_model.simulate_descendant_states(par_seq, length, mutation_rate, rng=rng)) else: # no tail node: root n_prev_seq = len(seq_list) if root_states is not None: seq_list.append(root_states) elif simulate_root_states: seq_model = getattr(node.edge, self.seq_model_attr, None) or self.seq_model seq_list.append(seq_model.stationary_sample(seq_len, rng=rng)) else: assert n_prev_seq > 0 n_prev_seq -= 1 return tree
[docs] def extend_char_matrix_with_characters_on_tree(self, char_matrix, tree, include=None, exclude=None): """ Creates a character matrix with new sequences (or extends sequences of an existing character matrix if provided via ``char_matrix``), where the the sequence for each taxon corresponds to the concatenation of all sequences in the list of sequences associated with tip that references the given taxon. Specific sequences to be included/excluded can be fine-tuned using the ``include`` and ``exclude`` args, where ``include=None`` means to include all by default, and ``exclude=None`` means to exclude all by default. """ for leaf in tree.leaf_nodes(): cvec = char_matrix[leaf.taxon] seq_list = getattr(leaf, self.seq_attr) for seq_idx, seq in enumerate(seq_list): if ((include is None) or (seq_idx in include)) \ and ((exclude is None) or (seq_idx not in exclude)): for state in seq: cvec.append(state) return char_matrix
def clean_tree(self, tree): for nd in tree: # setattr(nd, self.seq_attr, []) delattr(nd, self.seq_attr)
############################################################################ ## Specialized Models: nucldeotides
[docs] class NucleotideCharacterEvolutionModel(DiscreteCharacterEvolutionModel): "General nucleotide substitution model." def __init__(self, base_freqs=None, state_alphabet=None, rng=None): "__init__ calls SeqModel.__init__ and sets the base_freqs field" if state_alphabet is None: state_alphabet = dendropy.DNA_STATE_ALPHABET DiscreteCharacterEvolutionModel.__init__( self, state_alphabet=state_alphabet, rng=rng) if base_freqs is None: self.base_freqs = [0.25, 0.25, 0.25, 0.25] else: self.base_freqs = base_freqs
[docs] def stationary_sample(self, seq_len, rng=None): """ Returns a NucleotideSequence() object with length ``length`` representing a sample of characters drawn from this model's stationary distribution. """ probs = self.base_freqs char_state_indices = [probability.sample_multinomial(probs, rng) for i in range(seq_len)] return [self.state_alphabet[idx] for idx in char_state_indices]
[docs] def is_purine(self, state_index): """ Returns True if state_index represents a purine (A or G) row or column index: 0, 2 """ return state_index % 2 == 0
[docs] def is_pyrimidine(self, state_index): """ Returns True if state_index represents a pyrimidine (C or T) row or column index: 1, 3 """ return state_index % 2 == 1
[docs] def is_transversion(self, state1_idx, state2_idx): """ Returns True if the change from state1 to state2, as represented by the row or column indices, is a transversional change. """ return (self.is_purine(state1_idx) and self.is_pyrimidine(state2_idx)) \ or (self.is_pyrimidine(state1_idx) and self.is_purine(state2_idx))
[docs] def is_purine_transition(self, state1_idx, state2_idx): """ Returns True if the change from state1 to state2, as represented by the row or column indices, is a purine transitional change. """ return self.is_purine(state1_idx) and self.is_purine(state2_idx)
[docs] def is_pyrimidine_transition(self, state1_idx, state2_idx): """ Returns True if the change from state1 to state2, as represented by the row or column indices, is a pyrimidine transitional change. """ return self.is_pyrimidine(state1_idx) \ and self.is_pyrimidine(state2_idx)
[docs] def is_transition(self, state1_idx, state2_idx): """ Returns True if the change from state1 to state2, as represented by the row or column indices, is a transitional change. """ return (self.is_purine(state1_idx) and self.is_purine(state2_idx)) \ or (self.is_pyrimidine(state1_idx) and self.is_pyrimidine(state2_idx))
[docs] class Hky85(NucleotideCharacterEvolutionModel): """ Hasegawa et al. 1985 model. Implementation following Swofford et al., 1996. """ def __init__(self, kappa=1.0, base_freqs=None, state_alphabet=None, rng=None): "__init__: if no arguments given, defaults to JC69." if state_alphabet is None: state_alphabet = dendropy.DNA_STATE_ALPHABET NucleotideCharacterEvolutionModel.__init__( self, base_freqs=base_freqs, state_alphabet=state_alphabet, rng=rng) self.correct_rate = True self.kappa = kappa def __repr__(self): rep = "kappa=%f bases=%s" % (self.kappa, str(self.base_freqs)) return rep
[docs] def corrected_substitution_rate(self, rate): """Returns the factor that we have to multiply to the branch length to make branch lengths proportional to # of substitutions per site.""" if self.correct_rate: pia = self.base_freqs[0] pic = self.base_freqs[1] pig = self.base_freqs[2] pit = self.base_freqs[3] f = self.kappa*(pia*pig + pic*pit) f += (pia + pig)*(pic + pit) return (rate * 0.5/f) # (rate * 0.5/f) else: return rate
[docs] def pij(self, state_i, state_j, tlen, rate=1.0): """ Returns probability, p_ij, of going from state i to state j over time tlen at given rate. (tlen * rate = nu, expected number of substitutions) """ nu = self.corrected_substitution_rate(rate) * tlen if self.is_purine(state_j): sumfreqs = self.base_freqs[0] + self.base_freqs[2] else: sumfreqs = self.base_freqs[1] + self.base_freqs[3] factorA = 1 + (sumfreqs * (self.kappa - 1.0)) if state_i == state_j: pij = self.base_freqs[state_j] \ + self.base_freqs[state_j] \ * (1.0/sumfreqs - 1) * math.exp(-1.0 * nu) \ + ((sumfreqs - self.base_freqs[state_j])/sumfreqs) \ * math.exp(-1.0 * nu * factorA) elif self.is_transition(state_i, state_j): pij = self.base_freqs[state_j] \ + self.base_freqs[state_j] \ * (1.0/sumfreqs - 1) * math.exp(-1.0 * nu) \ - (self.base_freqs[state_j] / sumfreqs) \ * math.exp(-1.0 * nu * factorA) else: pij = self.base_freqs[state_j] * (1.0 - math.exp(-1.0 * nu)) return pij
[docs] def qmatrix(self, rate=1.0): "Returns the instantaneous rate of change matrix." rate = self.corrected_substitution_rate(rate) qmatrix = [] for state_i in range(4): qmatrix.append([]) for state_j in range(4): if state_i == state_j: # we cheat here and insert a placeholder till the # other cells are calculated qij = 0.0 else: if self.is_transition(state_i, state_j): qij = rate * self.kappa * self.base_freqs[state_j] else: qij = rate * self.base_freqs[state_j] qmatrix[state_i].append(qij) for state in range(4): qmatrix[state][state] = -1.0 * sum(qmatrix[state]) return qmatrix
[docs] def pvector(self, state, tlen, rate=1.0): """ Returns a vector of transition probabilities for a given state over time ``tlen`` at rate ``rate`` for ``state``. (tlen * rate = nu, expected number of substitutions) """ pvec = [] # in case later we want to allow characters passed in here state_i = state for state_j in range(4): pvec.append(self.pij(state_i, state_j, tlen=tlen, rate=rate)) return pvec
[docs] def pmatrix(self, tlen, rate=1.0): """ Returns a matrix of nucleotide substitution probabilities. Based on analytical solution by Swofford et al., 1996. (tlen * rate = nu, expected number of substitutions) """ pmatrix = [] for state_i in range(4): pmatrix.append(self.pvector(state_i, tlen=tlen, rate=rate)) return pmatrix
[docs] class Jc69(Hky85): """ Jukes-Cantor 1969 model. Specializes HKY85 such that kappa = 1.0, and base frequencies = [0.25, 0.25, 0.25, 0.25]. """ def __init__(self, state_alphabet=None, rng=None): "__init__: uses Hky85.__init__" Hky85.__init__(self, kappa=1.0, base_freqs=[0.25, 0.25, 0.25, 0.25], state_alphabet=state_alphabet, rng=rng, )
############################################################################## ## Wrappers for Convenience
[docs] def simulate_discrete_char_dataset(seq_len, tree_model, seq_model, mutation_rate=1.0, root_states=None, dataset=None, rng=None): """ Wrapper to conveniently generate a DataSet simulated under the given tree and character model. Parameters ---------- seq_len : int Length of sequence (number of characters). tree_model : |Tree| Tree on which to simulate. seq_model : dendropy.model.discrete.NucleotideCharacterEvolutionModel The character substitution model under which to to evolve the characters. mutation_rate : float Mutation *modifier* rate (should be 1.0 if branch lengths on tree reflect true expected number of changes). root_states`` : list Vector of root states (length must equal ``seq_len``). dataset : |DataSet| If given, the new dendropy.CharacterMatrix object will be added to this (along with a new taxon_namespace if required). Otherwise, a new dendropy.DataSet object will be created. rng : random number generator If not given, 'GLOBAL_RNG' will be used. Returns ------- d : |DataSet| """ if dataset is None: dataset = dendropy.DataSet() if tree_model.taxon_namespace not in dataset.taxon_namespaces: taxon_namespace = dataset.add_taxon_namespace(tree_model.taxon_namespace) else: taxon_namespace = tree_model.taxon_namespace char_matrix = simulate_discrete_chars( seq_len=seq_len, tree_model=tree_model, seq_model=seq_model, mutation_rate=mutation_rate, root_states=root_states, char_matrix=None, rng=None) dataset.add_char_matrix(char_matrix=char_matrix) return dataset
[docs] def simulate_discrete_chars( seq_len, tree_model, seq_model, mutation_rate=1.0, root_states=None, char_matrix=None, retain_sequences_on_tree=False, rng=None): """ Wrapper to conveniently generate a characters simulated under the given tree and character model. Since characters will be appended to existing sequences, you can simulate a sequences under a mixed model by calling this method multiple times with different character models and/or different mutation rates, passing in the same ``char_matrix`` object each time. Parameters ---------- seq_len : int Length of sequence (number of characters). tree_model : |Tree| Tree on which to simulate. seq_model : dendropy.model.discrete.NucleotideCharacterEvolutionModel The character substitution model under which to to evolve the characters. mutation_rate : float Mutation *modifier* rate (should be 1.0 if branch lengths on tree reflect true expected number of changes). root_states`` : list Vector of root states (length must equal ``seq_len``). char_matrix : |DnaCharacterMatrix| If given, new sequences for taxa on ``tree_model`` leaf_nodes will be appended to existing sequences of corresponding taxa in char_matrix; if not, a new |DnaCharacterMatrix| object will be created. retain_sequences_on_tree : bool If |False|, sequence annotations will be cleared from tree after simulation. Set to |True| if you want to, e.g., evolve and accumulate different sequences on tree, or retain information for other purposes. rng : random number generator If not given, 'GLOBAL_RNG' will be used. Returns ------- d : a dendropy.datamodel.CharacterMatrix object. """ seq_evolver = DiscreteCharacterEvolver(seq_model=seq_model, mutation_rate=mutation_rate) tree = seq_evolver.evolve_states( tree=tree_model, seq_len=seq_len, root_states=None, rng=rng) tree.migrate_taxon_namespace(tree_model.taxon_namespace) if char_matrix is None: char_matrix = dendropy.DnaCharacterMatrix(taxon_namespace=tree_model.taxon_namespace) char_matrix.taxon_namespace = tree_model.taxon_namespace else: assert char_matrix.taxon_namespace is tree_model.taxon_namespace, "conflicting taxon sets" seq_evolver.extend_char_matrix_with_characters_on_tree( char_matrix=char_matrix, tree=tree) if not retain_sequences_on_tree: seq_evolver.clean_tree(tree) return char_matrix
[docs] def hky85_chars( seq_len, tree_model, mutation_rate=1.0, kappa=1.0, base_freqs=[0.25, 0.25, 0.25, 0.25], root_states=None, char_matrix=None, retain_sequences_on_tree=False, rng=None): """ Convenience class to wrap generation of characters (as a CharacterBlock object) based on the HKY model. Parameters ---------- seq_len : int Length of sequence (number of characters). tree_model : |Tree| Tree on which to simulate. mutation_rate : float Mutation *modifier* rate (should be 1.0 if branch lengths on tree reflect true expected number of changes). root_states`` : list Vector of root states (length must equal ``seq_len``). char_matrix : |DnaCharacterMatrix| If given, new sequences for taxa on ``tree_model`` leaf_nodes will be appended to existing sequences of corresponding taxa in char_matrix; if not, a new |DnaCharacterMatrix| object will be created. retain_sequences_on_tree : bool If |False|, sequence annotations will be cleared from tree after simulation. Set to |True| if you want to, e.g., evolve and accumulate different sequences on tree, or retain information for other purposes. rng : random number generator If not given, 'GLOBAL_RNG' will be used. Returns ------- d : |DnaCharacterMatrix| The simulated alignment. Since characters will be appended to existing sequences, you can simulate a sequences under a mixed model by calling this method multiple times with different character model parameter values and/or different mutation rates, passing in the same ``char_matrix`` object each time. """ if char_matrix is None: char_matrix = dendropy.DnaCharacterMatrix(taxon_namespace=tree_model.taxon_namespace) else: assert char_matrix.taxon_namespace is tree_model.taxon_namespace state_alphabet = char_matrix.default_state_alphabet seq_model = Hky85( kappa=kappa, base_freqs=base_freqs, state_alphabet=state_alphabet, rng=rng, ) return simulate_discrete_chars(seq_len=seq_len, tree_model=tree_model, seq_model=seq_model, mutation_rate=mutation_rate, root_states=root_states, char_matrix=char_matrix, rng=rng)