#! /usr/bin/env python
# -*- coding: utf-8 -*-
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Models and modeling of discrete character evolution.
"""
import math
from dendropy.utility import GLOBAL_RNG
from dendropy.calculate import probability
import dendropy
############################################################################
## Character Evolution Modeling
[docs]
class DiscreteCharacterEvolutionModel(object):
"Base class for discrete character substitution models."
def __init__(self, state_alphabet, stationary_freqs=None, rng=None):
"""
__init__ initializes the state_alphabet to define the character type on which
this model acts. The objects random number generator will be ``rng`` or 'GLOBAL_RNG'
"""
self.state_alphabet = state_alphabet
if rng is None:
self.rng = GLOBAL_RNG
else:
self.rng = rng
[docs]
def pmatrix(self, tlen, rate=1.0):
"""
Returns a matrix of nucleotide substitution
probabilities.
"""
raise NotImplementedError
[docs]
def simulate_descendant_states(self,
ancestral_states,
edge_length,
mutation_rate=1.0,
rng=None):
"""
Returns descendent sequence given ancestral sequence.
"""
if rng is None:
rng = self.rng
pmat = self.pmatrix(edge_length, mutation_rate)
multi = probability.sample_multinomial
desc_states = []
for state in ancestral_states:
anc_state_idx = state.index
desc_state_idx = multi(pmat[anc_state_idx], rng)
desc_states.append(self.state_alphabet[desc_state_idx])
return desc_states
[docs]
class DiscreteCharacterEvolver(object):
"Evolves sequences on a tree."
def __init__(self,
seq_model=None,
mutation_rate=None,
seq_attr='sequences',
seq_model_attr="seq_model",
edge_length_attr="length",
edge_rate_attr="mutation_rate",
seq_label_attr='taxon'):
"__init__ sets up meta-data dealing with object nomenclature and semantics."
self.seq_model = seq_model
self.mutation_rate = mutation_rate
self.seq_attr = seq_attr
self.seq_model_attr = seq_model_attr
self.edge_length_attr = edge_length_attr
self.edge_rate_attr = edge_rate_attr
self.seq_label_attr = seq_label_attr
[docs]
def evolve_states(self,
tree,
seq_len,
root_states=None,
simulate_root_states=True,
in_place=True,
rng=None):
"""
Appends a new sequence of length ``seq_len`` to a list at each node
in ``tree``. The attribute name of this list in each node is given
by ``seq_attr``. If ``seq_model`` is None, ``tree.seq_model`` or
``seq_model`` at each node must be specified. If ``in_place`` is
False, the tree is copied first, otherwise original tree is modified.
If ``root_states`` is given, this will be used as the sequence for the root.
If not, and if ``simulate_root_states`` is True, then the sequence for the
root will be drawn from the stationary distribution of the character model.
"""
if rng is None:
rng = GLOBAL_RNG
if not in_place:
tree = tree.clone(1) # ==> taxon_namespace_scoped_copy()
if self.seq_model is None:
seq_model = getattr(tree, self.seq_model_attr, None)
# loop through edges in preorder (root->tips)
n_prev_seq = None # to mollify linter undefined variable warning
for edge in tree.preorder_edge_iter():
node = edge.head_node
if not hasattr(node, self.seq_attr):
setattr(node, self.seq_attr, [])
seq_list = getattr(node, self.seq_attr)
if edge.tail_node:
par = edge.tail_node
assert n_prev_seq is not None
if len(seq_list) != n_prev_seq:
raise ValueError("'%s' length varies among nodes" % self.seq_attr)
par_seq = getattr(par, self.seq_attr)[-1]
seq_model = getattr(edge, self.seq_model_attr, None) or self.seq_model
length = getattr(edge, self.edge_length_attr)
mutation_rate = getattr(edge, self.edge_rate_attr, None) or self.mutation_rate
seq_list.append(seq_model.simulate_descendant_states(par_seq,
length,
mutation_rate,
rng=rng))
else:
# no tail node: root
n_prev_seq = len(seq_list)
if root_states is not None:
seq_list.append(root_states)
elif simulate_root_states:
seq_model = getattr(node.edge, self.seq_model_attr, None) or self.seq_model
seq_list.append(seq_model.stationary_sample(seq_len, rng=rng))
else:
assert n_prev_seq > 0
n_prev_seq -= 1
return tree
[docs]
def extend_char_matrix_with_characters_on_tree(self,
char_matrix,
tree,
include=None,
exclude=None):
"""
Creates a character matrix with new sequences (or extends sequences of
an existing character matrix if provided via ``char_matrix``),
where the the sequence for each taxon corresponds to the concatenation
of all sequences in the list of sequences associated with tip that
references the given taxon.
Specific sequences to be included/excluded can be fine-tuned using the
``include`` and ``exclude`` args, where ``include=None`` means to include all
by default, and ``exclude=None`` means to exclude all by default.
"""
for leaf in tree.leaf_nodes():
cvec = char_matrix[leaf.taxon]
seq_list = getattr(leaf, self.seq_attr)
for seq_idx, seq in enumerate(seq_list):
if ((include is None) or (seq_idx in include)) \
and ((exclude is None) or (seq_idx not in exclude)):
for state in seq:
cvec.append(state)
return char_matrix
def clean_tree(self, tree):
for nd in tree:
# setattr(nd, self.seq_attr, [])
delattr(nd, self.seq_attr)
############################################################################
## Specialized Models: nucldeotides
[docs]
class NucleotideCharacterEvolutionModel(DiscreteCharacterEvolutionModel):
"General nucleotide substitution model."
def __init__(self, base_freqs=None, state_alphabet=None, rng=None):
"__init__ calls SeqModel.__init__ and sets the base_freqs field"
if state_alphabet is None:
state_alphabet = dendropy.DNA_STATE_ALPHABET
DiscreteCharacterEvolutionModel.__init__(
self,
state_alphabet=state_alphabet,
rng=rng)
if base_freqs is None:
self.base_freqs = [0.25, 0.25, 0.25, 0.25]
else:
self.base_freqs = base_freqs
[docs]
def stationary_sample(self, seq_len, rng=None):
"""
Returns a NucleotideSequence() object with length ``length``
representing a sample of characters drawn from this model's
stationary distribution.
"""
probs = self.base_freqs
char_state_indices = [probability.sample_multinomial(probs, rng) for i in range(seq_len)]
return [self.state_alphabet[idx] for idx in char_state_indices]
[docs]
def is_purine(self, state_index):
"""
Returns True if state_index represents a purine (A or G) row or column
index: 0, 2
"""
return state_index % 2 == 0
[docs]
def is_pyrimidine(self, state_index):
"""
Returns True if state_index represents a pyrimidine (C or T) row or column
index: 1, 3
"""
return state_index % 2 == 1
[docs]
def is_transversion(self, state1_idx, state2_idx):
"""
Returns True if the change from state1 to state2, as
represented by the row or column indices, is a transversional
change.
"""
return (self.is_purine(state1_idx) and self.is_pyrimidine(state2_idx)) \
or (self.is_pyrimidine(state1_idx) and self.is_purine(state2_idx))
[docs]
def is_purine_transition(self, state1_idx, state2_idx):
"""
Returns True if the change from state1 to state2, as
represented by the row or column indices, is a purine
transitional change.
"""
return self.is_purine(state1_idx) and self.is_purine(state2_idx)
[docs]
def is_pyrimidine_transition(self, state1_idx, state2_idx):
"""
Returns True if the change from state1 to state2, as
represented by the row or column indices, is a pyrimidine
transitional change.
"""
return self.is_pyrimidine(state1_idx) \
and self.is_pyrimidine(state2_idx)
[docs]
def is_transition(self, state1_idx, state2_idx):
"""
Returns True if the change from state1 to state2, as
represented by the row or column indices, is a
transitional change.
"""
return (self.is_purine(state1_idx) and self.is_purine(state2_idx)) \
or (self.is_pyrimidine(state1_idx) and self.is_pyrimidine(state2_idx))
[docs]
class Hky85(NucleotideCharacterEvolutionModel):
"""
Hasegawa et al. 1985 model. Implementation following Swofford et
al., 1996.
"""
def __init__(self, kappa=1.0, base_freqs=None, state_alphabet=None, rng=None):
"__init__: if no arguments given, defaults to JC69."
if state_alphabet is None:
state_alphabet = dendropy.DNA_STATE_ALPHABET
NucleotideCharacterEvolutionModel.__init__(
self,
base_freqs=base_freqs,
state_alphabet=state_alphabet,
rng=rng)
self.correct_rate = True
self.kappa = kappa
def __repr__(self):
rep = "kappa=%f bases=%s" % (self.kappa, str(self.base_freqs))
return rep
[docs]
def corrected_substitution_rate(self, rate):
"""Returns the factor that we have to multiply to the branch length
to make branch lengths proportional to # of substitutions per site."""
if self.correct_rate:
pia = self.base_freqs[0]
pic = self.base_freqs[1]
pig = self.base_freqs[2]
pit = self.base_freqs[3]
f = self.kappa*(pia*pig + pic*pit)
f += (pia + pig)*(pic + pit)
return (rate * 0.5/f) # (rate * 0.5/f)
else:
return rate
[docs]
def pij(self, state_i, state_j, tlen, rate=1.0):
"""
Returns probability, p_ij, of going from state i to state j
over time tlen at given rate. (tlen * rate = nu, expected
number of substitutions)
"""
nu = self.corrected_substitution_rate(rate) * tlen
if self.is_purine(state_j):
sumfreqs = self.base_freqs[0] + self.base_freqs[2]
else:
sumfreqs = self.base_freqs[1] + self.base_freqs[3]
factorA = 1 + (sumfreqs * (self.kappa - 1.0))
if state_i == state_j:
pij = self.base_freqs[state_j] \
+ self.base_freqs[state_j] \
* (1.0/sumfreqs - 1) * math.exp(-1.0 * nu) \
+ ((sumfreqs - self.base_freqs[state_j])/sumfreqs) \
* math.exp(-1.0 * nu * factorA)
elif self.is_transition(state_i, state_j):
pij = self.base_freqs[state_j] \
+ self.base_freqs[state_j] \
* (1.0/sumfreqs - 1) * math.exp(-1.0 * nu) \
- (self.base_freqs[state_j] / sumfreqs) \
* math.exp(-1.0 * nu * factorA)
else:
pij = self.base_freqs[state_j] * (1.0 - math.exp(-1.0 * nu))
return pij
[docs]
def qmatrix(self, rate=1.0):
"Returns the instantaneous rate of change matrix."
rate = self.corrected_substitution_rate(rate)
qmatrix = []
for state_i in range(4):
qmatrix.append([])
for state_j in range(4):
if state_i == state_j:
# we cheat here and insert a placeholder till the
# other cells are calculated
qij = 0.0
else:
if self.is_transition(state_i, state_j):
qij = rate * self.kappa * self.base_freqs[state_j]
else:
qij = rate * self.base_freqs[state_j]
qmatrix[state_i].append(qij)
for state in range(4):
qmatrix[state][state] = -1.0 * sum(qmatrix[state])
return qmatrix
[docs]
def pvector(self, state, tlen, rate=1.0):
"""
Returns a vector of transition probabilities for a given state
over time ``tlen`` at rate ``rate`` for ``state``. (tlen * rate =
nu, expected number of substitutions)
"""
pvec = []
# in case later we want to allow characters passed in here
state_i = state
for state_j in range(4):
pvec.append(self.pij(state_i, state_j, tlen=tlen, rate=rate))
return pvec
[docs]
def pmatrix(self, tlen, rate=1.0):
"""
Returns a matrix of nucleotide substitution
probabilities. Based on analytical solution by Swofford et
al., 1996. (tlen * rate = nu, expected number of
substitutions)
"""
pmatrix = []
for state_i in range(4):
pmatrix.append(self.pvector(state_i, tlen=tlen, rate=rate))
return pmatrix
[docs]
class Jc69(Hky85):
"""
Jukes-Cantor 1969 model. Specializes HKY85 such that
kappa = 1.0, and base frequencies = [0.25, 0.25, 0.25, 0.25].
"""
def __init__(self, state_alphabet=None, rng=None):
"__init__: uses Hky85.__init__"
Hky85.__init__(self,
kappa=1.0,
base_freqs=[0.25, 0.25, 0.25, 0.25],
state_alphabet=state_alphabet,
rng=rng,
)
##############################################################################
## Wrappers for Convenience
[docs]
def simulate_discrete_char_dataset(seq_len,
tree_model,
seq_model,
mutation_rate=1.0,
root_states=None,
dataset=None,
rng=None):
"""
Wrapper to conveniently generate a DataSet simulated under
the given tree and character model.
Parameters
----------
seq_len : int
Length of sequence (number of characters).
tree_model : |Tree|
Tree on which to simulate.
seq_model : dendropy.model.discrete.NucleotideCharacterEvolutionModel
The character substitution model under which to to evolve the
characters.
mutation_rate : float
Mutation *modifier* rate (should be 1.0 if branch lengths on tree
reflect true expected number of changes).
root_states`` : list
Vector of root states (length must equal ``seq_len``).
dataset : |DataSet|
If given, the new dendropy.CharacterMatrix object will be
added to this (along with a new taxon_namespace if
required). Otherwise, a new dendropy.DataSet
object will be created.
rng : random number generator
If not given, 'GLOBAL_RNG' will be used.
Returns
-------
d : |DataSet|
"""
if dataset is None:
dataset = dendropy.DataSet()
if tree_model.taxon_namespace not in dataset.taxon_namespaces:
taxon_namespace = dataset.add_taxon_namespace(tree_model.taxon_namespace)
else:
taxon_namespace = tree_model.taxon_namespace
char_matrix = simulate_discrete_chars(
seq_len=seq_len,
tree_model=tree_model,
seq_model=seq_model,
mutation_rate=mutation_rate,
root_states=root_states,
char_matrix=None,
rng=None)
dataset.add_char_matrix(char_matrix=char_matrix)
return dataset
[docs]
def simulate_discrete_chars(
seq_len,
tree_model,
seq_model,
mutation_rate=1.0,
root_states=None,
char_matrix=None,
retain_sequences_on_tree=False,
rng=None):
"""
Wrapper to conveniently generate a characters simulated under
the given tree and character model.
Since characters will be appended to existing sequences, you can simulate a
sequences under a mixed model by calling this method multiple times with
different character models and/or different mutation rates, passing
in the same ``char_matrix`` object each time.
Parameters
----------
seq_len : int
Length of sequence (number of characters).
tree_model : |Tree|
Tree on which to simulate.
seq_model : dendropy.model.discrete.NucleotideCharacterEvolutionModel
The character substitution model under which to to evolve the
characters.
mutation_rate : float
Mutation *modifier* rate (should be 1.0 if branch lengths on tree
reflect true expected number of changes).
root_states`` : list
Vector of root states (length must equal ``seq_len``).
char_matrix : |DnaCharacterMatrix|
If given, new sequences for taxa on ``tree_model`` leaf_nodes will be
appended to existing sequences of corresponding taxa in char_matrix; if
not, a new |DnaCharacterMatrix| object will be created.
retain_sequences_on_tree : bool
If |False|, sequence annotations will be cleared from tree after
simulation. Set to |True| if you want to, e.g., evolve and accumulate
different sequences on tree, or retain information for other purposes.
rng : random number generator
If not given, 'GLOBAL_RNG' will be used.
Returns
-------
d : a dendropy.datamodel.CharacterMatrix object.
"""
seq_evolver = DiscreteCharacterEvolver(seq_model=seq_model,
mutation_rate=mutation_rate)
tree = seq_evolver.evolve_states(
tree=tree_model,
seq_len=seq_len,
root_states=None,
rng=rng)
tree.migrate_taxon_namespace(tree_model.taxon_namespace)
if char_matrix is None:
char_matrix = dendropy.DnaCharacterMatrix(taxon_namespace=tree_model.taxon_namespace)
char_matrix.taxon_namespace = tree_model.taxon_namespace
else:
assert char_matrix.taxon_namespace is tree_model.taxon_namespace, "conflicting taxon sets"
seq_evolver.extend_char_matrix_with_characters_on_tree(
char_matrix=char_matrix,
tree=tree)
if not retain_sequences_on_tree:
seq_evolver.clean_tree(tree)
return char_matrix
[docs]
def hky85_chars(
seq_len,
tree_model,
mutation_rate=1.0,
kappa=1.0,
base_freqs=[0.25, 0.25, 0.25, 0.25],
root_states=None,
char_matrix=None,
retain_sequences_on_tree=False,
rng=None):
"""
Convenience class to wrap generation of characters (as a CharacterBlock
object) based on the HKY model.
Parameters
----------
seq_len : int
Length of sequence (number of characters).
tree_model : |Tree|
Tree on which to simulate.
mutation_rate : float
Mutation *modifier* rate (should be 1.0 if branch lengths on tree
reflect true expected number of changes).
root_states`` : list
Vector of root states (length must equal ``seq_len``).
char_matrix : |DnaCharacterMatrix|
If given, new sequences for taxa on ``tree_model`` leaf_nodes will be
appended to existing sequences of corresponding taxa in char_matrix; if
not, a new |DnaCharacterMatrix| object will be created.
retain_sequences_on_tree : bool
If |False|, sequence annotations will be cleared from tree after
simulation. Set to |True| if you want to, e.g., evolve and accumulate
different sequences on tree, or retain information for other purposes.
rng : random number generator
If not given, 'GLOBAL_RNG' will be used.
Returns
-------
d : |DnaCharacterMatrix|
The simulated alignment.
Since characters will be appended to existing sequences, you can simulate a
sequences under a mixed model by calling this method multiple times with
different character model parameter values and/or different mutation
rates, passing in the same ``char_matrix`` object each time.
"""
if char_matrix is None:
char_matrix = dendropy.DnaCharacterMatrix(taxon_namespace=tree_model.taxon_namespace)
else:
assert char_matrix.taxon_namespace is tree_model.taxon_namespace
state_alphabet = char_matrix.default_state_alphabet
seq_model = Hky85(
kappa=kappa,
base_freqs=base_freqs,
state_alphabet=state_alphabet,
rng=rng,
)
return simulate_discrete_chars(seq_len=seq_len,
tree_model=tree_model,
seq_model=seq_model,
mutation_rate=mutation_rate,
root_states=root_states,
char_matrix=char_matrix,
rng=rng)