Source code for dendropy.model.continuous

#! /usr/bin/env python
# -*- coding: utf-8 -*-

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Models and modeling of continuous character evolution.
"""

import math
from functools import reduce
import operator
import dendropy
from dendropy.utility import GLOBAL_RNG

[docs] class PhylogeneticIndependentContrasts(object): """ Phylogenetic Independent Contrasts. References: - Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1-15. - Garland, T., Jr., Jr., A. F. Bennett, and E. L. Rezende. 2005. Phylogenetic approaches in comparative physiology. Journal of Experimental Biology 208:3015-3035. """ def __init__(self, tree, char_matrix, polytomy_strategy=None): """ Parameters ---------- tree : |Tree| object Tree to use. char_matrix : |ContinuousCharacterMatrix| ContinuousCharacterMatrix that is the source of the data polytomy_strategy One of: 'error', 'ignore', 'resolve'. 'error' Throws an error if tree has polytomies. 'ignore' No error, but raw contrasts will not be calculated for polytomies. 'resolve' Randomly resolve polytomies. Defaults to 'error' if not specified or set to None. """ self._tree = None self._char_matrix = None self._is_dirty = None self._is_fully_analyzed = False self._polytomy_strategy = None self._character_contrasts = {} self._set_polytomy_strategy(polytomy_strategy) self.tree = tree self.char_matrix = char_matrix def _get_polytomy_strategy(self): return self._polytomy_strategy def _set_polytomy_strategy(self, polytomy_strategy): if polytomy_strategy is None: self._polytomy_strategy = 'error' else: polytomy_strategy = polytomy_strategy.lower() if polytomy_strategy not in ['error', 'ignore', 'resolve']: raise ValueError("Invalid polytomy strategy: '%s'" % polytomy_strategy) else: self._polytomy_strategy = polytomy_strategy polytomy_strategy = property(_get_polytomy_strategy, None) def _get_tree(self): if not self._is_fully_analyzed: analyzed_chars = self._character_contrasts.keys() for idx in range(len(self.char_matrix[0])): if idx in analyzed_chars: continue self._get_contrasts(idx) self._is_fully_analyzed = True return self._tree def _set_tree(self, tree): self._tree = dendropy.Tree(tree) if self._polytomy_strategy == 'resolve': self._tree.resolve_polytomies() self.is_dirty = True tree = property(_get_tree, _set_tree, None, """\ This tree will have an attribute added to each node, ``pic``. This attribute will be a dictionary with character (column) index as keys. Each column index will map to another dictionary that has the following keys (and values): - ``pic_state_value`` - ``pic_state_variance`` - ``pic_contrast_raw`` - ``pic_contrast_variance`` - ``pic_contrast_standardized`` - ``pic_edge_length_error`` - ``pic_corrected_edge_length`` """) def _get_char_matrix(self): return self._char_matrix def _set_char_matrix(self, char_matrix): self._char_matrix = char_matrix self.is_dirty = True char_matrix = property(_get_char_matrix, _set_char_matrix) def _get_is_dirty(self): return self._is_dirty def _set_is_dirty(self, is_dirty): self._is_dirty = is_dirty if self._is_dirty: self._character_contrasts = {} self._is_fully_analyzed = False is_dirty = property(_get_is_dirty, _set_is_dirty) def _get_contrasts(self, character_index): """ Main work-horse method. If needed, adds an entry to self._character_constrants, with key being the character index, and a value being another dictionary that contains the constrast information. This second dictionary has the node's id as a key and as a value the a dictionary with the following: - ``pic_state_value`` - ``pic_state_variance`` - ``pic_contrast_raw`` - ``pic_contrast_variance`` - ``pic_contrast_standardized`` - ``pic_edge_length_error`` - ``pic_corrected_edge_length`` """ if character_index in self._character_contrasts: return self._character_contrasts[character_index] all_results = {} for nd in self._tree.postorder_node_iter(): nd_results = {} child_nodes = nd.child_nodes() if len(child_nodes) == 0: nd_results['pic_state_value'] = self._char_matrix[nd.taxon][character_index] nd_results['pic_state_variance'] = None nd_results['pic_contrast_raw'] = None nd_results['pic_contrast_variance'] = None nd_results['pic_contrast_standardized'] = None nd_results['pic_edge_length_error'] = 0.0 nd_results['pic_corrected_edge_length'] = nd.edge.length elif len(child_nodes) == 1: # root node? nd_results['pic_state_value'] = None nd_results['pic_state_variance'] = None nd_results['pic_contrast_raw'] = None nd_results['pic_contrast_variance'] = None nd_results['pic_contrast_standardized'] = None nd_results['pic_edge_length_error'] = None nd_results['pic_corrected_edge_length'] = None else: state_vals = [] corrected_edge_lens = [] actual_edge_lens = [] for cnd in child_nodes: state_vals.append(all_results[cnd._track_id]['pic_state_value']) actual_edge_lens.append(cnd.edge.length) if all_results[cnd._track_id]['pic_corrected_edge_length'] is not None: corrected_edge_lens.append(all_results[cnd._track_id]['pic_corrected_edge_length']) else: corrected_edge_lens.append(cnd.edge.length) n = len(state_vals) numerator_fn = lambda i : (1.0/corrected_edge_lens[i]) * state_vals[i] denominator_fn = lambda i : 1.0/corrected_edge_lens[i] nd_results['pic_state_value'] = \ sum(numerator_fn(i) for i in range(n)) \ / sum(denominator_fn(i) for i in range(n)) sum_of_child_edges = sum(corrected_edge_lens) prod_of_child_edges = reduce(operator.mul, corrected_edge_lens) nd_results['pic_edge_length_error'] = ( prod_of_child_edges / (sum_of_child_edges) ) if nd.edge.length is not None: nd_results['pic_corrected_edge_length'] = nd.edge.length + nd_results['pic_edge_length_error'] else: nd_results['pic_corrected_edge_length'] = None nd_results['pic_state_variance'] = nd_results['pic_corrected_edge_length'] if len(child_nodes) != 2: if self._polytomy_strategy == "ignore": nd_results['pic_contrast_raw'] = None nd_results['pic_contrast_standardized'] = None nd_results['pic_contrast_variance'] = sum_of_child_edges else: raise ValueError("Tree is not fully-bifurcating") else: nd_results['pic_contrast_raw'] = state_vals[0] - state_vals[1] nd_results['pic_contrast_standardized'] = nd_results['pic_contrast_raw'] / (sum_of_child_edges ** 0.5) nd_results['pic_contrast_variance'] = sum_of_child_edges nd._track_id = id(nd) # will get cloned all_results[nd._track_id] = nd_results try: nd.pic[character_index] = dict(nd_results) except AttributeError: nd.pic = {character_index: dict(nd_results)} self._character_contrasts[character_index] = dict(all_results) return self._character_contrasts[character_index]
[docs] def contrasts_tree(self, character_index, annotate_pic_statistics=True, state_values_as_node_labels=False, corrected_edge_lengths=False): """ Returns a Tree object annotated with the following attributes added to each node (as annotations to be serialized if ``annotate_pic_statistics`` is True): - ``pic_state_value`` - ``pic_state_variance`` - ``pic_contrast_raw`` - ``pic_contrast_variance`` - ``pic_contrast_standardized`` - ``pic_edge_length_error`` - ``pic_corrected_edge_length`` """ contrasts = self._get_contrasts(character_index) tree = dendropy.Tree(self._tree) for nd in tree.postorder_node_iter(): nd_results = contrasts[nd._track_id] for k, v in nd_results.items(): setattr(nd, k, v) if annotate_pic_statistics: nd.annotations.add_bound_attribute(k) if corrected_edge_lengths and nd_results['pic_corrected_edge_length'] is not None: nd.edge.length = nd_results['pic_corrected_edge_length'] if state_values_as_node_labels: nd.label = str(nd_results['pic_state_value']) return tree
[docs] def evolve_continuous_char(node, rng=None, **kwargs): """ Takes a node and a random number generator object, ``rng`` This function "evolves" a set of rates on the subtree descending from the ``node``. kwargs keys that are used are: ``roeotroe`` the rate of evolution of the rate of evolution. This parameter that controls the degree of deviations away from the molecular clock. ``min_rate`` is the minimum rate (default None) ``max_rate`` is the maximum rate (default None), ``model`` is a string specifying the name of the model. Currently only the KTB (Kishino, Thorne, Bruno) is supported ``time_attr`` is a string that specifies the name of the attribute that returns the branch length in terms of time for a node. The default is "edge_length" ``val_attr`` is the string that specifies the name of the attribute used to hold the value that is evolving along the nodes. The root of the subtree is assumed to have this field on calling of the function. On success all nodes in the subtree will have the attribute. The default is "mutation_rate" ``mean_val_attr`` if specified this is string that gives the name of attribute in each node that is mean value for the branch (default is None). This is filled in after time_attr and val_attr are read, so it is permissible to have this attribute match one of thos strings (although it will make the model odd if the mean_val_attr is the same as the val_attr) ``constrain_rate_mode`` controls the behavior when the minimum or maximum rate is simulated. The choices are "crop", and "linear_bounce" "crop" means that the rate is set to the most extreme value allowed. "linear_bounce" considers the path of evolution of rate to be a simple line from the ancestor's rate to the proposed rate. The point at which the path crosses the extreme value is determined and the rate is "reflected off" the limiting rate at that point. This causes the rate to avoid the extreme values more than a simulation of small time slices that simply rejects illegal rates. Currently the only model supported is the one of Kishino, Thorne, and Bruno. "Performance of a Divergence Time Estimation Method under a Probabilistic Model of Rate Evolution." Molecular Biology and Evolution (2001) vol. 18 (3) pp. 352-361. This model is specified by the code "KTB". A node's rate is a log-normal variate with variance determined by the product of the duration of the branch and the roeotroe parameter. The mean of the distribution is chosen such that mean of the log-normal is identical to the rate at the parent. The mean_rate for the branch is the average of the rates at the endpoints. """ if rng is None: rng = GLOBAL_RNG nd_iter = node.preorder_iter() # skip the first node -- it should already have a rate next(nd_iter) if kwargs.get("model", "KTB").upper() != "KTB": raise ValueError("Only the Kishino-Thorne-Bruno model is supported at this time") val_attr = kwargs.get("val_attr", "mutation_rate") if not val_attr: raise ValueError("val_attr cannot be an empty string") time_attr = kwargs.get("time_attr", "edge_length") mean_val_attr = kwargs.get("mean_val_attr") constrain_rate_mode = kwargs.get("constrain_rate_mode", "crop").lower() if constrain_rate_mode not in ["crop", "linear_bounce"]: raise ValueError('Only "crop" and "linear_bounce" are supported at this time') roeotroe = kwargs.get("roeotroe", 1.0) min_rate = kwargs.get("min_rate", 0.0) if min_rate < 0.0: raise ValueError("min_rate cannot be less than 0") max_rate = kwargs.get("max_rate") anc_rate = getattr(node, val_attr) if max_rate is not None: if min_rate is not None: if min_rate > max_rate: raise ValueError("max_rate must be greater than the min_rate") if min_rate == max_rate: for nd in nd_iter: setattr(nd, val_attr, min_rate) if mean_val_attr: # here we assume that the rate changed from the # ancestral rate to the only allowed rate # instantaneously, so the mean rat is min_rate setattr(nd, mean_val_attr, min_rate) return if max_rate <= 0.0: raise ValueError("max_rate must be positive") if anc_rate > max_rate: raise ValueError("rate for the incoming node is > max_rate") if (min_rate is not None) and anc_rate < min_rate: raise ValueError("rate for the incoming node is > max_rate") if constrain_rate_mode == "crop": rate_fn = _calc_KTB_rates_crop else: rate_fn = _calc_KTB_rates_linear_bounce for nd in nd_iter: starting_rate = getattr(nd.parent_node, val_attr) duration = getattr(nd, time_attr) r, mr = rate_fn(starting_rate, duration, roeotroe, rng, min_rate, max_rate) setattr(nd, val_attr, r) if mean_val_attr: setattr(nd, mean_val_attr, mr)
def _bounce_constrain(start_x, x, min_x=None, max_x=None): """Returns the value of variable and its mean value over a path. We assume that some variable started at ``start_x`` and moved toward ``x``, but has to bounce of barriers specified by ``min_x`` and ``max_x``. ``x`` determines the direction and magnitude of the change. ``start_x`` must fall in the legal range (between the min and max). If ``x`` is also legal, then (x, (x + start_x)/2.0) will be returned reflecting the fact that the arithmetic mean of the endpoints represents the mean value of the variable if it took a direct path (at constant rate). """ if max_x is not None and min_x is not None: assert(max_x > min_x) gt_max = (max_x is not None and x > max_x) lt_min = (min_x is not None and x < min_x) prev_x = start_x prop_dur_remaining = 1.0 mx = 0.0 while gt_max or lt_min: if gt_max: p_changing = (max_x - prev_x)/(x - prev_x) mean_changing = (prev_x + max_x)/2.0 mx += p_changing*prop_dur_remaining*mean_changing prop_dur_remaining *= 1.0 - p_changing x = 2*max_x - x lt_min = (min_x is not None and x < min_x) prev_x = max_x gt_max = False if lt_min: p_changing = (prev_x - min_x)/(prev_x - x) mean_changing = (prev_x + min_x)/2.0 mx += prop_dur_remaining*p_changing*mean_changing prop_dur_remaining *= 1.0 - p_changing x = 2*min_x - x lt_min = False gt_max = (max_x is not None and x > max_x) prev_x = min_x mean_changing = (prev_x + x)/2.0 mx += mean_changing*prop_dur_remaining return x, mx def _calc_TKP_rate(starting_rate, duration, roeotroe, rng): """ Returns a simulated rate for the head node of a tree when: * the tail node has rate ``starting_rate`` * the time duration of the edge is ``duration`` * the rate of evolution of the rate of evolution is ``roeotroe`` (this is the parameter nu in Kishino, Thorne, and Bruno 2001) ``rng`` is a random number generator. The model used to generate the rate is the one described by Thorne, Kishino, and Painter 1998. The descendant rates or lognormally distributed. The mean rate returned will have an expectation of ``starting_rate`` The variance of the normal distribution for the logarithm of the ending rate is the product of ``duration`` and ``roeotroe`` """ rate_var = duration*roeotroe if rate_var > 0.0: mu = math.log(starting_rate) return rng.lognormvariate(mu, math.sqrt(rate_var)) return starting_rate def _calc_KTB_rate(starting_rate, duration, roeotroe, rng): """ Returns a simulated rate for the head node of a tree when: * the tail node has rate ``starting_rate`` * the time duration of the edge is ``duration`` * the rate of evolution of the rate of evolution is ``roeotroe`` (this is the parameter nu in Kishino, Thorne, and Bruno 2001) ``rng`` is a random number generator. The model used to generate the rate is the one described by Kishino, Thorne, and Bruno 2001. The descendant rates or lognormally distributed. The mean rate returned will have an expectation of ``starting_rate`` The variance of the normal distribution for the logarithm of the ending rate is the product of ``duration`` and ``roeotroe`` """ if starting_rate <= 0.0: raise ValueError("starting_rate must be positive in the KTB model") rate_var = duration*roeotroe if rate_var > 0.0: # Kishino, Thorne and Bruno corrected the tendency for the rate to # increase seen in teh TKP, 1998 model mu = math.log(starting_rate) - (rate_var/2.0) return rng.lognormvariate(mu, math.sqrt(rate_var)) return starting_rate def _calc_KTB_rates_crop(starting_rate, duration, roeotroe, rng, min_rate=None, max_rate=None): """Returns a descendant rate and mean rate according to the Kishino, Thorne, Bruno model. Assumes that the min_rate <= starting_rate <= max_rate if a max and min are provided. rate is kept within in the [min_rate, max_rate] range by cropping at these values and acting is if the cropping occurred at an appropriate point in the duration of the branch (based on a linear change in rate from the beginning of the random_variate drawn for the end of the branch). """ if roeotroe*duration <= 0.0: if (min_rate and starting_rate < min_rate) or (max_rate and starting_rate > max_rate): raise ValueError("Parent rate is out of bounds, but no rate change is possible") r = _calc_KTB_rate(starting_rate, duration, roeotroe, rng) if max_rate and r > max_rate: assert(starting_rate <= max_rate) p_changing = (max_rate - starting_rate)/(r - starting_rate) mean_changing = (starting_rate + max_rate)/2.0 mr = p_changing*mean_changing + (1.0 - p_changing)*max_rate return max_rate, mr elif min_rate and r < min_rate: assert(starting_rate >= min_rate) p_changing = (starting_rate - min_rate)/(starting_rate - r) mean_changing = (starting_rate + min_rate)/2.0 mr = p_changing*mean_changing + (1.0 - p_changing)*min_rate return min_rate, mr return r, (starting_rate + r)/2.0 def _calc_KTB_rates_linear_bounce(starting_rate, duration, roeotroe, rng, min_rate=0.0, max_rate=None): """Returns a descendant rate and mean rate according to the Kishino, Thorne, Bruno model. Assumes that the min_rate <= starting_rate <= max_rate if a max and min are provided. The rate is kept within in the [min_rate, max_rate] range by "bouncing" off of the barriers, where the "collision" is estimated by assuming a linear change in rate from the beginning of the random_variate drawn for the end of the branch). """ if roeotroe*duration <= 0.0: if (min_rate and starting_rate < min_rate) or (max_rate and starting_rate > max_rate): raise ValueError("Parent rate is out of bounds, but no rate change is possible") r = _calc_KTB_rate(starting_rate, duration, roeotroe, rng) if min_rate is None: min_rate = 0.0 return _bounce_constrain(starting_rate, r, min_rate, max_rate)