#! /usr/bin/env python
# -*- coding: utf-8 -*-
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
This module handles the core definition of classes that model collections of
trees.
"""
import collections
import math
import copy
from dendropy.utility import error
from dendropy.utility import bitprocessing
from dendropy.utility import deprecate
from dendropy.utility import constants
from dendropy.calculate import statistics
from dendropy.datamodel import basemodel
from dendropy.datamodel import taxonmodel
from dendropy.datamodel import treemodel
from dendropy import dataio
##############################################################################
### TreeList
[docs]
class TreeList(
taxonmodel.TaxonNamespaceAssociated,
basemodel.Annotable,
basemodel.Deserializable,
basemodel.MultiReadable,
basemodel.Serializable,
basemodel.DataObject):
"""
A collection of |Tree| objects, all referencing the same "universe" of
opeational taxonomic unit concepts through the same |TaxonNamespace|
object reference.
"""
@classmethod
def _parse_and_create_from_stream(cls,
stream,
schema,
collection_offset=None,
tree_offset=None,
**kwargs):
r"""
Constructs a new |TreeList| object and populates it with trees from
file-like object ``stream``.
Notes
-----
*All* operational taxonomic unit concepts in the data source will be included
in the |TaxonNamespace| object associated with the new
|TreeList| object and its contained |Tree| objects, even those
not associated with trees or the particular trees being retrieved.
Parameters
----------
stream : file or file-like object
Source of data.
schema : string
Identifier of format of data in ``stream``
collection_offset : integer or None
0-based index indicating collection of trees to parse. If |None|,
then all tree collections are retrieved, with each distinct
collection parsed into a separate |TreeList| object. If the
tree colleciton offset index is equal or greater than the number of
tree collections in the data source, then IndexError is raised.
Negative offsets work like negative list indexes; e.g., a
``collection_offset`` of -1 means to read the last collection of
trees in the data source. For data formats that do not support the
concept of distinct tree collections (e.g. NEWICK) are considered
single-collection data source (i.e, the only acceptable
``collection_offset`` values are -1 or 0).
tree_offset : integer or None
0-based index indicating particular tree within a particular
collection of trees at which to begin reading. If not specified or
|None| (default), then all trees are parsed. Otherwise, must be an
integer value up the length of the collection minus 1. A positive
offset indicates the number of trees in the collection to skip;
e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the
collection. Negative offsets work like negative list indexes;
e.g., a ``tree_offset`` value of -10 means to retrieve the last 10
trees in the collection. If the tree offset index is equal or
greater than the number of trees in the collection, then IndexError
is raised. Requires that a particular tree collection has been
identified using the ``tree_collection_offset`` parameter: if
``tree_collection_offset`` is not specified, a TypeError is raised.
\*\*kwargs : keyword arguments
Arguments to customize parsing, instantiation, processing, and
accession of |Tree| objects read from the data source, including
schema- or format-specific handling.
The following optional keyword arguments are recognized and handled
by this function:
* ``label`` Specifies the label or description of the new
|TreeList|.
* ``taxon_namespace`` specifies the |TaxonNamespace|
object to be attached to the new |TreeList| object.
Note that *all* operational taxonomic unit concepts in the
data source will be accessioned into the specified
|TaxonNamespace| instance. This includes the
operation taxonomic unit definitions associated with all
tree collections and character matrices in the data source.
* ``tree_list`` : **SPECIAL** If passed a |TreeList| using
this keyword, then this instance is populated and returned
(instead of a new instance being created).
All other keyword arguments are passed directly to |TreeList|.read()`.
Other keyword arguments may be available, depending on the implementation
of the reader specialized to handle ``schema`` formats.
Notes
-----
Note that in most cases, even if ``collection_offset`` and ``tree_offset``
are specified to restrict the trees returned, the *entire* data source
is still parsed and processed. So this is not more efficient than
reading all the trees and then manually-extracting them later; just
more convenient. If you need just a single subset of trees from a data
source, there is no gain in efficiency. If you need multiple trees or
subsets of trees from the same data source, it would be much more
efficient to read the entire data source, and extract trees as needed.
Returns
-------
A |TreeList| object.
"""
# these must be pulled before passing the kwargs
# down to the reader
tree_list = kwargs.pop("tree_list", None)
taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
label = kwargs.pop("label", None)
# get the reader
reader = dataio.get_reader(schema, **kwargs)
# Accommodate an existing TreeList object being passed
if tree_list is None:
tree_list = cls(label=label, taxon_namespace=taxon_namespace)
if collection_offset is None and tree_offset is not None:
collection_offset = 0
if collection_offset is None:
# if tree_offset is not None:
# raise TypeError("Cannot specify ``tree_offset`` without specifying ``collection_offset``")
# coerce all tree products into this list
reader.read_tree_lists(
stream=stream,
taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory,
tree_list_factory=tree_list._tree_list_pseudofactory,
global_annotations_target=None)
else:
tree_lists = reader.read_tree_lists(
stream=stream,
taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory,
tree_list_factory=tree_list.__class__,
global_annotations_target=None)
# if collection_offset < 0:
# raise IndexError("Collection offset out of range: {} (minimum valid tree offset = 0)".format(collection_offset))
if collection_offset >= len(tree_lists):
raise IndexError("Collection offset out of range: {} (number of collections = {}, maximum valid collection offset = {})".format(collection_offset, len(tree_lists), len(tree_lists)-1))
target_tree_list = tree_lists[collection_offset]
tree_list.copy_annotations_from(target_tree_list)
if tree_offset is not None:
# if tree_offset < 0:
# raise IndexError("Tree offset out of range: {} (minimum offset = 0)".format(tree_offset))
if tree_offset >= len(target_tree_list):
raise IndexError("Tree offset out of range: {} (number of trees in source = {}, maximum valid tree offset = {})".format(tree_offset, len(target_tree_list), len(target_tree_list)-1))
for tree in target_tree_list[tree_offset:]:
tree_list._trees.append(tree)
else:
for tree in target_tree_list:
tree_list._trees.append(tree)
return tree_list
# taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
# label = kwargs.pop("label", None)
# tree_list = cls(label=label,
# taxon_namespace=taxon_namespace)
# tree_list.read(
# stream=stream,
# schema=schema,
# collection_offset=collection_offset,
# tree_offset=tree_offset,
# **kwargs)
# return tree_list
[docs]
@classmethod
def get(cls, **kwargs):
"""
Instantiate and return a *new* |TreeList| object from a data source.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **label** (*str*) -- Name or identifier to be assigned to the new
object; if not given, will be assigned the one specified in the
data source, or |None| otherwise.
- **taxon_namespace** (|TaxonNamespace|) -- The |TaxonNamespace|
instance to use to :doc:`manage the taxon names </primer/taxa>`.
If not specified, a new one will be created.
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tlst1 = dendropy.TreeList.get(
file=open('treefile.tre', 'rU'),
schema="newick")
tlst2 = dendropy.TreeList.get(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tlst3 = dendropy.TreeList.get(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tree4 = dendropy.dendropy.TreeList.get(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return cls._get_from(**kwargs)
DEFAULT_TREE_TYPE = treemodel.Tree
[docs]
@classmethod
def tree_factory(cls, *args, **kwargs):
r"""
Creates and returns a |Tree| of a type that this list understands how to
manage.
Deriving classes can override this to provide for custom Tree-type
object lists. You can simple override the class-level variable
`DEFAULT_TREE_TYPE` in your derived class if the constructor signature
of the alternate tree type is the same as |Tree|.
If you want to have a TreeList *instance* that generates
custom trees (i.e., as opposed to a TreeList-ish *class* of instances),
set the ``tree_type`` attribute of the TreeList instance.
Parameters
----------
\*args : positional arguments
Passed directly to constructor of |Tree|.
\*\*kwargs : keyword arguments
Passed directly to constructor of |Tree|.
Returns
-------
A |Tree| object.
"""
tree = cls.DEFAULT_TREE_TYPE(*args, **kwargs)
return tree
###########################################################################
### Lifecycle and Identity
def __init__(self, *args, **kwargs):
"""
Constructs a new |TreeList| object, populating it with any iterable
container with Tree object members passed as unnamed argument, or from
a data source if ``stream`` and ``schema`` are passed.
If passed an iterable container, the objects in that container must be
of type |Tree| (or derived). If the container is of type |TreeList|,
then, because each |Tree| object must have the same |TaxonNamespace|
reference as the containing |TreeList|, the trees in the container
passed as an initialization argument will be **deep**-copied (except
for associated |TaxonNamespace| and |Taxon| objects, which will
be shallow-copied). If the container is any other type of
iterable, then the |Tree| objects will be **shallow**-copied.
|TreeList| objects can directly thus be instantiated in the
following ways::
# /usr/bin/env python
from dendropy import TaxonNamespace, Tree, TreeList
# instantiate an empty tree
tlst1 = TreeList()
# TreeList objects can be instantiated from an external data source
# using the 'get()' factory class method
tlst2 = TreeList.get(file=open('treefile.tre', 'rU'), schema="newick")
tlst3 = TreeList.get(path='sometrees.nexus', schema="nexus")
tlst4 = TreeList.get(data="((A,B),(C,D));((A,C),(B,D));", schema="newick")
# can also call `read()` on a TreeList object; each read adds
# (appends) the tree(s) found to the TreeList
tlst5 = TreeList()
tlst5.read(file=open('boot1.tre', 'rU'), schema="newick")
tlst5.read(path="boot3.tre", schema="newick")
tlst5.read(value="((A,B),(C,D));((A,C),(B,D));", schema="newick")
# populated from list of Tree objects
tlist6_1 = Tree.get(
data="((A,B),(C,D))",
schema="newick")
tlist6_2 = Tree.get(
data="((A,C),(B,D))",
schema="newick")
tlist6 = TreeList([tlist5_1, tlist5_2])
# passing keywords to underlying tree parser
tlst8 = TreeList.get(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick",
taxon_namespace=tlst3.taxon_namespace,
rooting="force-rooted",
extract_comment_metadata=True,
store_tree_weights=False,
preserve_underscores=True)
# Subsets of trees can be read. Note that in most cases, the entire
# data source is parsed, so this is not more efficient than reading
# all the trees and then manually-extracting them later; just more
# convenient
# skip the *first* 100 trees in the *first* (offset=0) collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=0,
tree_offset=100)
# get the *last* 10 trees in the *second* (offset=1) collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=1,
tree_offset=-10)
# get the last 10 trees in the second-to-last collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=-2,
tree_offset=100)
# Slices give shallow-copy: trees are references
tlst4copy0a = t4[:]
assert tlst4copy0a[0] is t4[0]
tlst4copy0b = t4[:4]
assert tlst4copy0b[0] is t4[0]
# 'Taxon-namespace-scoped' copy:
# I.e., Deep-copied objects but taxa and taxon namespace
# are copied as references
tlst4copy1a = TreeList(t4)
tlst4copy1b = TreeList([Tree(t) for t in tlst5])
assert tlst4copy1a[0] is not tlst4[0] # True
assert tlst4copy1a.taxon_namespace is tlst4.taxon_namespace # True
assert tlst4copy1b[0] is not tlst4[0] # True
assert tlst4copy1b.taxon_namespace is tlst4.taxon_namespace # True
"""
if len(args) > 1:
# only allow 1 positional argument
raise error.TooManyArgumentsError(func_name=self.__class__.__name__, max_args=1, args=args)
elif len(args) == 1 and isinstance(args[0], TreeList):
self._clone_from(args[0], kwargs)
else:
basemodel.DataObject.__init__(self, label=kwargs.pop("label", None))
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None))
self.tree_type = kwargs.pop("tree_type", self.__class__.DEFAULT_TREE_TYPE)
self._trees = []
self.comments = []
if len(args) == 1:
for aidx, a in enumerate(args[0]):
if not isinstance(a, self.tree_type):
raise ValueError("Cannot add object not of 'Tree' type to 'TreeList'")
self.append(a)
if kwargs:
raise TypeError("Unrecognized or unsupported arguments: {}".format(kwargs))
def __hash__(self):
return id(self)
def __eq__(self, other):
return (
isinstance(other, TreeList)
and (self.taxon_namespace is other.taxon_namespace)
and (self._trees == other._trees)
)
def _clone_from(self, tree_list, kwargs_dict):
memo = {}
# memo[id(tree)] = self
taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs_dict, tree_list.taxon_namespace)
memo[id(tree_list.taxon_namespace)] = taxon_namespace
if taxon_namespace is not tree_list.taxon_namespace:
for t1 in tree_list.taxon_namespace:
t2 = taxon_namespace.require_taxon(label=t1.label)
memo[id(t1)] = t2
else:
for t1 in tree_list.taxon_namespace:
memo[id(t1)] = t1
t = copy.deepcopy(tree_list, memo)
self.__dict__ = t.__dict__
self.label = kwargs_dict.pop("label", tree_list.label)
return self
def __copy__(self):
other = TreeList(label=self.label, taxon_namespace=self.taxon_namespace)
other._trees = list(self._trees)
memo = {}
memo[id(self)] = other
other.deep_copy_annotations_from(self, memo)
return other
[docs]
def taxon_namespace_scoped_copy(self, memo=None):
if memo is None:
memo = {}
# this populates ``memo`` with references to the
# the TaxonNamespace and Taxon objects
self.taxon_namespace.populate_memo_for_taxon_namespace_scoped_copy(memo)
return self.__deepcopy__(memo=memo)
def __deepcopy__(self, memo=None):
return basemodel.Annotable.__deepcopy__(self, memo=memo)
###########################################################################
### Representation
def __str__(self):
return "<TreeList {} '{}': [{}]>".format(hex(id(self)), self.label, ", ".join(repr(i) for i in self._trees))
###########################################################################
### Data I/O
def _taxon_namespace_pseudofactory(self, **kwargs):
"""
Dummy factory to coerce all |TaxonNamespace| objects required when
parsing a data source to reference ``self.taxon_namespace``.
"""
if "label" in kwargs and kwargs["label"] is not None and self.taxon_namespace.label is None:
self.taxon_namespace.label = kwargs["label"]
return self.taxon_namespace
def _tree_list_pseudofactory(self, **kwargs):
"""
Dummy factory to coerce all |TreeList| objects required when
parsing a data source to reference ``self``.
"""
if "label" in kwargs and kwargs["label"] is not None and self.label is None:
self.label = kwargs["label"]
return self
def _parse_and_add_from_stream(self,
stream,
schema,
collection_offset=None,
tree_offset=None,
**kwargs):
r"""
Parses |Tree| objects from data source and adds to this collection.
Notes
-----
*All* operational taxonomic unit concepts in the data source will be included
in the |TaxonNamespace| object associated with the new
|TreeList| object and its contained |Tree| objects, even those
not associated with trees or the particular trees being retrieved.
Parameters
----------
stream : file or file-like object
Source of data.
schema : string
Identifier of format of data in ``stream``.
collection_offset : integer or None
0-based index indicating collection of trees to parse. If |None|,
then all tree collections are retrieved, with each distinct
collection parsed into a separate |TreeList| object. If the
tree colleciton offset index is equal or greater than the number of
tree collections in the data source, then IndexError is raised.
Negative offsets work like negative list indexes; e.g., a
``collection_offset`` of -1 means to read the last collection of
trees in the data source. For data formats that do not support the
concept of distinct tree collections (e.g. NEWICK) are considered
single-collection data source (i.e, the only acceptable
``collection_offset`` values are -1 or 0).
tree_offset : integer or None
0-based index indicating particular tree within a particular
collection of trees at which to begin reading. If not specified or
|None| (default), then all trees are parsed. Otherwise, must be an
integer value up the length of the collection minus 1. A positive
offset indicates the number of trees in the collection to skip;
e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the
collection. Negative offsets work like negative list indexes;
e.g., a ``tree_offset`` value of -10 means to retrieve the last 10
trees in the collection. If the tree offset index is equal or
greater than the number of trees in the collection, then IndexError
is raised. Requires that a particular tree collection has been
identified using the ``tree_collection_offset`` parameter: if
``tree_collection_offset`` is not specified, a TypeError is raised.
\*\*kwargs : keyword arguments
Arguments to customize parsing, instantiation, processing, and
accession of |Tree| objects read from the data source, including
schema- or format-specific handling. These will be passed to the
underlying schema-specific reader for handling.
General (schema-agnostic) keyword arguments are:
* ``rooted`` specifies the default rooting interpretation of the tree.
* ``edge_length_type`` specifies the type of the edge lengths (int or
float; defaults to 'float')
Other keyword arguments are available depending on the schema. See
specific schema handlers (e.g., `NewickReader`, `NexusReader`,
`NexmlReader`) for more details.
Notes
-----
Note that in most cases, even if ``collection_offset`` and ``tree_offset``
are specified to restrict the trees read, the *entire* data source
is still parsed and processed. So this is not more efficient than
reading all the trees and then manually-extracting them later; just
more convenient. If you need just a single subset of trees from a data
source, there is no gain in efficiency. If you need multiple trees or
subsets of trees from the same data source, it would be much more
efficient to read the entire data source, and extract trees as needed.
Returns
-------
n : ``int``
The number of |Tree| objects read.
"""
if "taxon_namespace" in kwargs and kwargs['taxon_namespace'] is not self.taxon_namespace:
raise TypeError("Cannot change ``taxon_namespace`` when reading into an existing TreeList")
kwargs["taxon_namespace"] = self.taxon_namespace
kwargs["tree_list"] = self
cur_size = len(self._trees)
TreeList._parse_and_create_from_stream(
stream=stream,
schema=schema,
collection_offset=collection_offset,
tree_offset=tree_offset,
**kwargs)
new_size = len(self._trees)
return new_size - cur_size
[docs]
def read(self, **kwargs):
"""
Add |Tree| objects to existing |TreeList| from data source providing
one or more collections of trees.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tlist = dendropy.TreeList()
tlist.read(
file=open('treefile.tre', 'rU'),
schema="newick",
tree_offset=100)
tlist.read(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tlist.read(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tlist.read(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return basemodel.MultiReadable._read_from(self, **kwargs)
def _format_and_write_to_stream(self, stream, schema, **kwargs):
r"""
Writes out ``self`` in ``schema`` format to a destination given by
file-like object ``stream``.
Parameters
----------
stream : file or file-like object
Destination for data.
schema : string
Must be a recognized and tree file schema, such as "nexus",
"newick", etc, for which a specialized tree list writer is
available. If this is not implemented for the schema specified, then
a UnsupportedSchemaError is raised.
\*\*kwargs : keyword arguments, optional
Keyword arguments will be passed directly to the writer for the
specified schema. See documentation for details on keyword
arguments supported by writers of various schemas.
"""
writer = dataio.get_writer(schema, **kwargs)
writer.write_tree_list(self, stream)
###########################################################################
### List Interface
def _import_tree_to_taxon_namespace(self,
tree,
taxon_import_strategy="migrate",
**kwargs):
if tree.taxon_namespace is not self.taxon_namespace:
if taxon_import_strategy == "migrate":
tree.migrate_taxon_namespace(taxon_namespace=self.taxon_namespace,
**kwargs)
elif taxon_import_strategy == "add":
tree._taxon_namespace = self.taxon_namespace
tree.update_taxon_namespace()
else:
raise ValueError("Unrecognized taxon import strategy: '{}'".format(taxon_import_strategy))
# assert tree.taxon_namespace is self.taxon_namespace
return tree
[docs]
def insert(self,
index,
tree,
taxon_import_strategy="migrate",
**kwargs):
r"""
Inserts a |Tree| object, ``tree``, into the collection before
``index``.
The |TaxonNamespace| reference of ``tree`` will be set to that of
``self``. Any |Taxon| objects associated with nodes in ``tree``
that are not already in ``self.taxon_namespace`` will be handled
according to ``taxon_import_strategy``:
- 'migrate'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_nameaspace`` will be remapped based on their
labels, with new :class|Taxon| objects being reconstructed if
none with matching labels are found. Specifically,
:meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()`
will be called on ``tree``, where ``kwargs`` is as passed to
this function.
- 'add'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_namespace`` will be added. Note that this might
result in |Taxon| objects with duplicate labels as no
attempt at mapping to existing |Taxon| objects based on
label-matching is done.
Parameters
----------
index : integer
Position before which to insert ``tree``.
tree : A |Tree| instance
The |Tree| object to be added.
taxon_import_strategy : string
If ``tree`` is associated with a different |TaxonNamespace|,
this argument determines how new |Taxon| objects in ``tree``
are handled: 'migrate' or 'add'. See above for details.
\*\*kwargs : keyword arguments
These arguments will be passed directly to
'migrate_taxon_namespace()' method call on ``tree``.
See Also
--------
:meth:`Tree.migrate_taxon_namespace`
"""
self._import_tree_to_taxon_namespace(
tree=tree,
taxon_import_strategy=taxon_import_strategy,
**kwargs)
self._trees.insert(index, tree)
[docs]
def append(self,
tree,
taxon_import_strategy="migrate",
**kwargs):
r"""
Adds a |Tree| object, ``tree``, to the collection.
The |TaxonNamespace| reference of ``tree`` will be set to that of
``self``. Any |Taxon| objects associated with nodes in ``tree``
that are not already in ``self.taxon_namespace`` will be handled
according to ``taxon_import_strategy``:
- 'migrate'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_nameaspace`` will be remapped based on their
labels, with new :class|Taxon| objects being reconstructed if
none with matching labels are found. Specifically,
:meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()`
will be called on ``tree``, where ``kwargs`` is as passed to this
function.
- 'add'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_namespace`` will be added. Note that this might
result in |Taxon| objects with duplicate labels as no
attempt at mapping to existing |Taxon| objects based on
label-matching is done.
Parameters
----------
tree : A |Tree| instance
The |Tree| object to be added.
taxon_import_strategy : string
If ``tree`` is associated with a different |TaxonNamespace|,
this argument determines how new |Taxon| objects in ``tree``
are handled: 'migrate' or 'add'. See above for details.
\*\*kwargs : keyword arguments
These arguments will be passed directly to
'migrate_taxon_namespace()' method call on ``tree``.
See Also
--------
:meth:`Tree.migrate_taxon_namespace`
"""
self._import_tree_to_taxon_namespace(
tree=tree,
taxon_import_strategy=taxon_import_strategy,
**kwargs)
self._trees.append(tree)
[docs]
def extend(self, other):
"""
In-place addition of |Tree| objects in ``other`` to ``self``.
If ``other`` is a |TreeList|, then the trees are *copied*
and migrated into ``self.taxon_namespace``; otherwise, the original
objects are migrated into ``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
``self`` : |TreeList|
"""
if isinstance(other, TreeList):
for t0 in other:
t1 = self.tree_type(t0, taxon_namespace=self.taxon_namespace)
self._trees.append(t1)
else:
for t0 in other:
self.append(t0)
return self
[docs]
def __iadd__(self, other):
"""
In-place addition of |Tree| objects in ``other`` to ``self``.
If ``other`` is a |TreeList|, then the trees are *copied*
and migrated into ``self.taxon_namespace``; otherwise, the original
objects are migrated into ``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
``self`` : |TreeList|
"""
return self.extend(other)
[docs]
def __add__(self, other):
"""
Creates and returns new |TreeList| with clones of all trees in ``self``
as well as all |Tree| objects in ``other``. If ``other`` is a
|TreeList|, then the trees are *cloned* and migrated into
``self.taxon_namespace``; otherwise, the original objects are migrated into
``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
tlist : |TreeList| object
|TreeList| object containing clones of |Tree| objects
in ``self`` and ``other``.
"""
tlist = TreeList(taxon_namespace=self.taxon_namespace)
tlist += self
tlist += other
return tlist
def __contains__(self, tree):
return tree in self._trees
def __delitem__(self, tree):
del self._trees[tree]
def __iter__(self):
return iter(self._trees)
def __reversed__(self):
return reversed(self._trees)
def __len__(self):
return len(self._trees)
[docs]
def __getitem__(self, index):
"""
If ``index`` is an integer, then |Tree| object at position ``index``
is returned. If ``index`` is a slice, then a |TreeList| is returned
with references (i.e., not copies or clones, but the actual original
instances themselves) to |Tree| objects in the positions given
by the slice. The |TaxonNamespace| is the same as ``self``.
Parameters
----------
index : integer or slice
Index or slice.
Returns
-------
t : |Tree| object or |TreeList| object
"""
if isinstance(index, slice):
r = self._trees[index]
return TreeList(r,
taxon_namespace=self.taxon_namespace)
else:
return self._trees[index]
def __setitem__(self, index, value):
if isinstance(index, slice):
if isinstance(value, TreeList):
tt = []
for t0 in value:
t1 = self.tree_type(t0,
taxon_namespace=self.taxon_namespace)
tt.append(t1)
value = tt
else:
for t in value:
self._import_tree_to_taxon_namespace(t)
self._trees[index] = value
else:
self._trees[index] = self._import_tree_to_taxon_namespace(value)
def clear(self):
# list.clear() only with 3.4 or so ...
self._trees = []
def index(self, tree):
return self._trees.index(tree)
def pop(self, index=-1):
return self._trees.pop(index)
def remove(self, tree):
self._trees.remove(tree)
def reverse(self):
self._trees.reverse()
def sort(self, key=None, reverse=False):
self._trees.sort(key=key, reverse=reverse)
def new_tree(self, *args, **kwargs):
tns = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, self.taxon_namespace)
if tns is not self.taxon_namespace:
raise TypeError("Cannot create new Tree with different TaxonNamespace")
kwargs["taxon_namespace"] = self.taxon_namespace
if self.tree_type is not None:
tree = self.tree_type(*args, **kwargs)
else:
tree = self.tree_factory(*args, **kwargs)
self._trees.append(tree)
return tree
##############################################################################
## Taxon Handling
[docs]
def reconstruct_taxon_namespace(self,
unify_taxa_by_label=True,
taxon_mapping_memo=None):
if taxon_mapping_memo is None:
taxon_mapping_memo = {}
for tree in self._trees:
tree._taxon_namespace = self.taxon_namespace
tree.reconstruct_taxon_namespace(
unify_taxa_by_label=unify_taxa_by_label,
taxon_mapping_memo=taxon_mapping_memo,
)
[docs]
def update_taxon_namespace(self):
for tree in self._trees:
tree._taxon_namespace = self.taxon_namespace
tree.update_taxon_namespace()
[docs]
def poll_taxa(self, taxa=None):
"""
Returns a set populated with all of |Taxon| instances associated
with ``self``.
Parameters
----------
taxa : set()
Set to populate. If not specified, a new one will be created.
Returns
-------
taxa : set[|Taxon|]
Set of taxa associated with ``self``.
"""
if taxa is None:
taxa = set()
for tree in self:
tree.poll_taxa(taxa)
return taxa
[docs]
def reindex_subcomponent_taxa():
raise NotImplementedError()
##############################################################################
## Special Calculations and Operations on Entire Collection
def _get_tree_array(self,
kwargs_dict,
):
"""
Return TreeArray containing information of trees currently
in self. Processes ``kwargs_dict`` intelligently: removing
and passing on keyword arguments pertaining to TreeArray
construction, and leaving everything else.
"""
# TODO: maybe ignore_node_ages defaults to |False| but ``ultrametricity_precision`` defaults to 0?
ta = TreeArray.from_tree_list(
trees=self,
# taxon_namespace=self.taxon_namespace,
is_rooted_trees=kwargs_dict.pop("is_rooted_trees", None),
ignore_edge_lengths=kwargs_dict.pop("ignore_edge_lengths", False),
ignore_node_ages=kwargs_dict.pop("ignore_node_ages", True),
use_tree_weights=kwargs_dict.pop("use_tree_weights", True),
ultrametricity_precision=kwargs_dict.pop("ultrametricity_precision", constants.DEFAULT_ULTRAMETRICITY_PRECISION),
is_force_max_age=kwargs_dict.pop("is_force_max_age", None),
taxon_label_age_map=kwargs_dict.pop("taxon_label_age_map", None),
is_bipartitions_updated=kwargs_dict.pop("is_bipartitions_updated", False)
)
return ta
[docs]
def split_distribution(self,
is_bipartitions_updated=False,
default_edge_length_value=None,
**kwargs):
"""
Return `SplitDistribution` collecting information on splits in
contained trees. Keyword arguments get passed directly to
`SplitDistribution` constructor.
"""
assert "taxon_namespace" not in kwargs or kwargs["taxon_namespace"] is self.taxon_namespace
kwargs["taxon_namespace"] = self.taxon_namespace
sd = SplitDistribution(**kwargs)
for tree in self:
sd.count_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
default_edge_length_value=default_edge_length_value)
return sd
[docs]
def as_tree_array(self, **kwargs):
"""
Return |TreeArray| collecting information on splits in contained
trees. Keyword arguments get passed directly to |TreeArray|
constructor.
"""
ta = TreeArray.from_tree_list(
trees=self,
**kwargs)
return ta
[docs]
def consensus(self,
min_freq=constants.GREATER_THAN_HALF,
is_bipartitions_updated=False,
summarize_splits=True,
**kwargs):
"""
Returns a consensus tree of all trees in self, with minumum frequency
of bipartition to be added to the consensus tree given by ``min_freq``.
"""
ta = self._get_tree_array(kwargs)
return ta.consensus_tree(min_freq=min_freq,
summarize_splits=summarize_splits,
**kwargs)
[docs]
def maximum_product_of_split_support_tree(
self,
include_external_splits=False,
score_attr="log_product_of_split_support"):
"""
Return the tree with that maximizes the product of split supports, also
known as the "Maximum Clade Credibility Tree" or MCCT.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the product of split supports.
"""
ta = self._get_tree_array({})
scores, max_score_tree_idx = ta.calculate_log_product_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self[max_score_tree_idx]
if score_attr is not None:
setattr(tree, score_attr, scores[max_score_tree_idx])
return tree
[docs]
def maximum_sum_of_split_support_tree(
self,
include_external_splits=False,
score_attr="sum_of_split_support"):
"""
Return the tree with that maximizes the *sum* of split supports.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the sum of split supports.
"""
ta = self._get_tree_array({})
scores, max_score_tree_idx = ta.calculate_sum_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self[max_score_tree_idx]
if score_attr is not None:
setattr(tree, score_attr, scores[max_score_tree_idx])
return tree
[docs]
def frequency_of_bipartition(self, **kwargs):
"""
Given a bipartition specified as:
- a |Bipartition| instance given the keyword 'bipartition'
- a split bitmask given the keyword 'split_bitmask'
- a list of |Taxon| objects given with the keyword ``taxa``
- a list of taxon labels given with the keyword ``labels``
this function returns the proportion of trees in self
in which the split is found.
If the tree(s) in the collection are unrooted, then the bipartition
will be normalized for the comparison.
"""
split = None
is_bipartitions_updated = kwargs.pop("is_bipartitions_updated", False)
if "split_bitmask" in kwargs:
split = kwargs["split_bitmask"]
elif "bipartition" in kwargs:
split = kwargs["bipartition"].split_bitmask
elif "taxa" in kwargs or "labels" in kwargs:
split = self.taxon_namespace.taxa_bitmask(**kwargs)
if "taxa" in kwargs:
k = len(kwargs["taxa"])
else:
k = len(kwargs["labels"])
if bitprocessing.num_set_bits(split) != k:
raise IndexError('Not all taxa could be mapped to bipartition (%s): %s' \
% (self.taxon_namespace.bitmask_as_bitstring(split), k))
else:
raise TypeError("Need to specify one of the following keyword arguments: 'split_bitmask', 'bipartition', 'taxa', or 'labels'")
unnormalized_split = split
normalized_split = treemodel.Bipartition.normalize_bitmask(
bitmask=split,
fill_bitmask=self.taxon_namespace.all_taxa_bitmask(),
lowest_relevant_bit=1)
found = 0
total = 0
for tree in self:
if not is_bipartitions_updated or not tree.bipartition_encoding:
tree.encode_bipartitions()
bipartition_encoding = set(b.split_bitmask for b in tree.bipartition_encoding)
total += 1
if tree.is_unrooted and (normalized_split in bipartition_encoding):
found += 1
elif (not tree.is_unrooted) and (unnormalized_split in bipartition_encoding):
found += 1
try:
return float(found)/total
except ZeroDivisionError:
return 0
[docs]
def frequency_of_split(self, **kwargs):
"""
DEPRECATED: use 'frequency_of_bipartition()' instead.
"""
deprecate.dendropy_deprecation_warning(
message="Deprecated since DendroPy 4: Instead of 'frequency_of_split()' use 'frequency_of_bipartition()'",
stacklevel=4,
)
return self.frequency_of_bipartition(**kwargs)
###############################################################################
### SplitDistribution
[docs]
class SplitDistribution(taxonmodel.TaxonNamespaceAssociated):
"""
Collects information regarding splits over multiple trees.
"""
SUMMARY_STATS_FIELDNAMES = ('mean', 'median', 'sd', 'hpd95', 'quant_5_95', 'range')
def __init__(self,
taxon_namespace=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=False,
taxon_label_age_map=None):
# Taxon Namespace
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxon_namespace)
# configuration
self.ignore_edge_lengths = ignore_edge_lengths
self.ignore_node_ages = ignore_node_ages
self.use_tree_weights = use_tree_weights
self.ultrametricity_precision = ultrametricity_precision
# storage/function
self.total_trees_counted = 0
self.sum_of_tree_weights = 0.0
self.tree_rooting_types_counted = set()
self.split_counts = collections.defaultdict(float)
self.split_edge_lengths = collections.defaultdict(list)
self.split_node_ages = collections.defaultdict(list)
self.is_force_max_age = is_force_max_age
self.is_force_min_age = False
self.taxon_label_age_map = taxon_label_age_map
# secondary/derived/generated/collected data
self._is_rooted = False
self._split_freqs = None
self._trees_counted_for_freqs = 0
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
self._trees_counted_for_summaries = 0
# services
self.tree_decorator = None
###########################################################################
### Utility
[docs]
def normalize_bitmask(self, bitmask):
"""
"Normalizes" split, by ensuring that the least-significant bit is
always 1 (used on unrooted trees to establish split identity
independent of rotation).
Parameters
----------
bitmask : integer
Split bitmask hash to be normalized.
Returns
-------
h : integer
Normalized split bitmask.
"""
return treemodel.Bipartition.normalize_bitmask(
bitmask=bitmask,
fill_bitmask=self.taxon_namespace.all_taxa_bitmask(),
lowest_relevant_bit=1)
###########################################################################
### Configuration
def _is_rooted_deprecation_warning(self):
deprecate.dendropy_deprecation_warning(
message="Deprecated since DendroPy 4: 'SplitDistribution.is_rooted' and 'SplitDistribution.is_unrooted' are no longer valid attributes; rooting state tracking and management is now the responsibility of client code.",
stacklevel=4,
)
def _get_is_rooted(self):
self._is_rooted_deprecation_warning()
return self._is_rooted
def _set_is_rooted(self, val):
self._is_rooted_deprecation_warning()
self._is_rooted = val
is_rooted = property(_get_is_rooted, _set_is_rooted)
def _get_is_unrooted(self):
self._is_rooted_deprecation_warning()
return not self._is_rooted
def _set_is_unrooted(self, val):
self._is_rooted_deprecation_warning()
self._is_rooted = not val
is_unrooted = property(_get_is_unrooted, _set_is_unrooted)
###########################################################################
### Split Counting and Book-Keeping
def add_split_count(self, split, count=1):
self.split_counts[split] += count
[docs]
def count_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
default_edge_length_value=None):
"""
Counts splits in this tree and add to totals. ``tree`` must be decorated
with splits, and no attempt is made to normalize taxa.
Parameters
----------
tree : a |Tree| object.
The tree on which to count the splits.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
Returns
--------
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values from ``tree``.
a :
A list of node age values from ``tree``.
"""
assert tree.taxon_namespace is self.taxon_namespace
self.total_trees_counted += 1
if not self.ignore_node_ages:
if self.taxon_label_age_map:
set_node_age_fn = self._set_node_age
else:
set_node_age_fn = None
tree.calc_node_ages(
ultrametricity_precision=self.ultrametricity_precision,
is_force_max_age=self.is_force_max_age,
is_force_min_age=self.is_force_min_age,
set_node_age_fn=set_node_age_fn,
)
if tree.weight is not None and self.use_tree_weights:
weight_to_use = float(tree.weight)
else:
weight_to_use = 1.0
self.sum_of_tree_weights += weight_to_use
if tree.is_rooted:
self.tree_rooting_types_counted.add(True)
else:
self.tree_rooting_types_counted.add(False)
if not is_bipartitions_updated:
tree.encode_bipartitions()
splits = []
edge_lengths = []
node_ages = []
for bipartition in tree.bipartition_encoding:
split = bipartition.split_bitmask
if hasattr(bipartition, "edge"):
edge = bipartition.edge
else:
# @MAM we're just doing a lookup of bipartition, not storing it
# so it's ok to override is_mutable here
was_mutable, bipartition.is_mutable = bipartition.is_mutable, False
edge = tree.bipartition_edge_map.get(bipartition)
bipartition.is_mutable = was_mutable
splits.append(split)
self.split_counts[split] += weight_to_use
if not self.ignore_edge_lengths:
sel = self.split_edge_lengths.setdefault(split,[])
if edge.length is None:
elen = default_edge_length_value
else:
elen = edge.length
sel.append(elen)
edge_lengths.append(elen)
else:
sel = None
if not self.ignore_node_ages:
sna = self.split_node_ages.setdefault(split, [])
if edge.head_node is not None:
nage = edge.head_node.age
else:
nage = None
sna.append(nage)
node_ages.append(nage)
else:
sna = None
return splits, edge_lengths, node_ages
[docs]
def splits_considered(self):
"""
Returns 4 values:
total number of splits counted
total *weighted* number of unique splits counted
total number of non-trivial splits counted
total *weighted* number of unique non-trivial splits counted
"""
if not self.split_counts:
return 0, 0, 0, 0
num_splits = 0
num_unique_splits = 0
num_nt_splits = 0
num_nt_unique_splits = 0
taxa_mask = self.taxon_namespace.all_taxa_bitmask()
for s in self.split_counts:
num_unique_splits += 1
num_splits += self.split_counts[s]
if not treemodel.Bipartition.is_trivial_bitmask(s, taxa_mask):
num_nt_unique_splits += 1
num_nt_splits += self.split_counts[s]
return num_splits, num_unique_splits, num_nt_splits, num_nt_unique_splits
[docs]
def calc_freqs(self):
"Forces recalculation of frequencies."
self._split_freqs = {}
if self.total_trees_counted == 0:
for split in self.split_counts:
self._split_freqs[split] = 1.0
else:
normalization_weight = self.calc_normalization_weight()
for split in self.split_counts:
count = self.split_counts[split]
self._split_freqs[split] = float(self.split_counts[split]) / normalization_weight
self._trees_counted_for_freqs = self.total_trees_counted
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
return self._split_freqs
def calc_normalization_weight(self):
if not self.sum_of_tree_weights:
return self.total_trees_counted
else:
return float(self.sum_of_tree_weights)
def update(self, split_dist):
self.total_trees_counted += split_dist.total_trees_counted
self.sum_of_tree_weights += split_dist.sum_of_tree_weights
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
self._trees_counted_for_summaries = 0
self.tree_rooting_types_counted.update(split_dist.tree_rooting_types_counted)
for split in split_dist.split_counts:
self.split_counts[split] += split_dist.split_counts[split]
self.split_edge_lengths[split] += split_dist.split_edge_lengths[split]
self.split_node_ages[split] += split_dist.split_node_ages[split]
###########################################################################
### Basic Information Access
def __len__(self):
return len(self.split_counts)
def __iter__(self):
for s in self.split_counts:
yield s
[docs]
def __getitem__(self, split_bitmask):
"""
Returns freqency of split_bitmask.
"""
return self._get_split_frequencies().get(split_bitmask, 0.0)
def _get_split_frequencies(self):
if self._split_freqs is None or self._trees_counted_for_freqs != self.total_trees_counted:
self.calc_freqs()
return self._split_freqs
split_frequencies = property(_get_split_frequencies)
def is_mixed_rootings_counted(self):
return ( (True in self.tree_rooting_types_counted)
and (False in self.tree_rooting_types_counted or None in self.tree_rooting_types_counted) )
def is_all_counted_trees_rooted(self):
return (True in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1)
def is_all_counted_trees_strictly_unrooted(self):
return (False in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1)
def is_all_counted_trees_treated_as_unrooted(self):
return True not in self.tree_rooting_types_counted
###########################################################################
### Summarization
[docs]
def split_support_iter(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
traversal_strategy="preorder",
node_support_attr_name=None,
edge_support_attr_name=None,
):
"""
Returns iterator over support values for the splits of a given tree,
where the support value is given by the proportional frequency of the
split in the current split distribution.
Parameters
----------
tree : |Tree|
The |Tree| which will be scored.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included.
If |False|, then these are skipped. This should only make a
difference when dealing with splits collected from trees of
different leaf sets.
traversal_strategy : str
One of: "preorder" or "postorder". Specfies order in which splits
are visited.
Returns
-------
s : list of floats
List of values for splits in the tree corresponding to the
proportional frequency that the split is found in the current
distribution.
"""
if traversal_strategy == "preorder":
if include_external_splits:
iter_fn = tree.preorder_node_iter
else:
iter_fn = tree.preorder_internal_node_iter
elif traversal_strategy == "postorder":
if include_external_splits:
iter_fn = tree.postorder_node_iter
else:
iter_fn = tree.postorder_internal_node_iter
else:
raise ValueError("Traversal strategy not supported: '{}'".format(traversal_strategy))
if not is_bipartitions_updated:
tree.encode_bipartitions()
split_frequencies = self._get_split_frequencies()
for nd in iter_fn():
split = nd.edge.split_bitmask
support = split_frequencies.get(split, 0.0)
yield support
def calc_split_edge_length_summaries(self):
self._split_edge_length_summaries = {}
for split, elens in self.split_edge_lengths.items():
if not elens:
continue
try:
self._split_edge_length_summaries[split] = statistics.summarize(elens)
except (ValueError, TypeError):
pass
return self._split_edge_length_summaries
def calc_split_node_age_summaries(self):
self._split_node_age_summaries = {}
for split, ages in self.split_node_ages.items():
if not ages:
continue
try:
self._split_node_age_summaries[split] = statistics.summarize(ages)
except (ValueError, TypeError):
pass
return self._split_node_age_summaries
def _set_node_age(self, nd):
if nd.taxon is None or nd._child_nodes:
return None
else:
return self.taxon_label_age_map.get(nd.taxon.label, 0.0)
def _get_split_edge_length_summaries(self):
if self._split_edge_length_summaries is None \
or self._trees_counted_for_summaries != self.total_trees_counted:
self.calc_split_edge_length_summaries()
return self._split_edge_length_summaries
split_edge_length_summaries = property(_get_split_edge_length_summaries)
def _get_split_node_age_summaries(self):
if self._split_node_age_summaries is None \
or self._trees_counted_for_summaries != self.total_trees_counted:
self.calc_split_node_age_summaries()
return self._split_node_age_summaries
split_node_age_summaries = property(_get_split_node_age_summaries)
[docs]
def log_product_of_split_support_on_tree(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
):
"""
Calculates the (log) product of the support of the splits of the
tree, where the support is given by the proportional frequency of the
split in the current split distribution.
The tree that has the highest product of split support out of a sample
of trees corresponds to the "maximum credibility tree" for that sample.
This can also be referred to as the "maximum clade credibility tree",
though this latter term is sometimes use for the tree that has the
highest *sum* of split support (see
:meth:`SplitDistribution.sum_of_split_support_on_tree()`).
Parameters
----------
tree : |Tree|
The tree for which the score should be calculated.
is_bipartitions_updated : bool
If |True|, then the splits are assumed to have already been encoded
and will not be updated on the trees.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : numeric
The log product of the support of the splits of the tree.
"""
log_product_of_split_support = 0.0
for split_support in self.split_support_iter(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
include_external_splits=include_external_splits,
traversal_strategy="preorder",
):
if split_support:
log_product_of_split_support += math.log(split_support)
return log_product_of_split_support
[docs]
def sum_of_split_support_on_tree(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
):
"""
Calculates the sum of the support of the splits of the tree, where the
support is given by the proportional frequency of the split in the
current distribtion.
Parameters
----------
tree : |Tree|
The tree for which the score should be calculated.
is_bipartitions_updated : bool
If |True|, then the splits are assumed to have already been encoded
and will not be updated on the trees.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : numeric
The sum of the support of the splits of the tree.
"""
sum_of_split_support = 0.0
for split_support in self.split_support_iter(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
include_external_splits=include_external_splits,
traversal_strategy="preorder",
):
sum_of_split_support += split_support
return sum_of_split_support
[docs]
def collapse_edges_with_less_than_minimum_support(self,
tree,
min_freq=constants.GREATER_THAN_HALF,
):
"""
Collapse edges on tree that have support less than indicated by
``min_freq``.
"""
if not tree.is_rooted and self.is_all_counted_trees_rooted():
raise ValueError("Tree is interpreted as unrooted, but split support is based on rooted trees")
elif tree.is_rooted and self.is_all_counted_trees_treated_as_unrooted():
raise ValueError("Tree is interpreted as rooted, but split support is based on unrooted trees")
tree.encode_bipartitions()
split_frequencies = self._get_split_frequencies()
to_collapse = []
for nd in tree.postorder_node_iter():
s = nd.edge.bipartition.split_bitmask
if s not in split_frequencies:
to_collapse.append(nd)
elif split_frequencies[s] < min_freq:
to_collapse.append(nd)
for nd in to_collapse:
nd.edge.collapse(adjust_collapsed_head_children_edge_lengths=True)
[docs]
def consensus_tree(self,
min_freq=constants.GREATER_THAN_HALF,
is_rooted=None,
summarize_splits=True,
**split_summarization_kwargs
):
r"""
Returns a consensus tree from splits in ``self``.
Parameters
----------
min_freq : real
The minimum frequency of a split in this distribution for it to be
added to the tree.
is_rooted : bool
Should tree be rooted or not? If *all* trees counted for splits are
explicitly rooted or unrooted, then this will default to |True| or
|False|, respectively. Otherwise it defaults to |None|.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
Returns
-------
t : consensus tree
"""
if is_rooted is None:
if self.is_all_counted_trees_rooted():
is_rooted = True
elif self.is_all_counted_trees_strictly_unrooted():
is_rooted = False
split_frequencies = self._get_split_frequencies()
to_try_to_add = []
_almost_one = lambda x: abs(x - 1.0) <= 0.0000001
for s in split_frequencies:
freq = split_frequencies[s]
if (min_freq is None) or (freq >= min_freq) or (_almost_one(min_freq) and _almost_one(freq)):
to_try_to_add.append((freq, s))
to_try_to_add.sort(reverse=True)
splits_for_tree = [i[1] for i in to_try_to_add]
con_tree = treemodel.Tree.from_split_bitmasks(
split_bitmasks=splits_for_tree,
taxon_namespace=self.taxon_namespace,
is_rooted=is_rooted)
if summarize_splits:
self.summarize_splits_on_tree(
tree=con_tree,
is_bipartitions_updated=False,
**split_summarization_kwargs
)
return con_tree
[docs]
def summarize_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
**split_summarization_kwargs
):
r"""
Summarizes support of splits/edges/node on tree.
Parameters
----------
tree: |Tree| instance
Tree to be decorated with support values.
is_bipartitions_updated: bool
If |True|, then bipartitions will not be recalculated.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
"""
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
if self.tree_decorator is None:
self.tree_decorator = SplitDistributionSummarizer()
self.tree_decorator.configure(**split_summarization_kwargs)
self.tree_decorator.summarize_splits_on_tree(
split_distribution=self,
tree=tree,
is_bipartitions_updated=is_bipartitions_updated)
return tree
###########################################################################
### legacy
def _get_taxon_set(self):
from dendropy import taxonmodel
taxonmodel.taxon_set_deprecation_warning()
return self.taxon_namespace
def _set_taxon_set(self, v):
from dendropy import taxonmodel
taxonmodel.taxon_set_deprecation_warning()
self.taxon_namespace = v
def _del_taxon_set(self):
from dendropy import taxonmodel
taxonmodel.taxon_set_deprecation_warning()
taxon_set = property(_get_taxon_set, _set_taxon_set, _del_taxon_set)
###############################################################################
### SplitDistributionSummarizer
[docs]
class SplitDistributionSummarizer(object):
def __init__(self, **kwargs):
"""
See :meth:`SplitDistributionSummarizer.configure` for configuration
options.
"""
self.configure(**kwargs)
def _decorate(self,
target,
fieldname,
value,
set_attribute,
set_annotation,
):
attr_name = getattr(self, "{}_attr_name".format(fieldname))
annotation_name = getattr(self, "{}_annotation_name".format(fieldname))
if set_attribute:
setattr(target, attr_name, value)
if set_annotation:
target.annotations.drop(name=annotation_name)
if getattr(self, "is_{}_annotation_dynamic".format(fieldname)):
target.annotations.add_bound_attribute(
attr_name=attr_name,
annotation_name=annotation_name,
)
else:
target.annotations.add_new(
name=annotation_name,
value=value,
)
elif set_annotation:
target.annotations.drop(name=annotation_name)
target.annotations.add_new(
name=annotation_name,
value=value,
)
def summarize_splits_on_tree(self,
split_distribution,
tree,
is_bipartitions_updated=False):
if split_distribution.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(split_distribution, tree)
if not is_bipartitions_updated:
tree.encode_bipartitions()
if self.support_label_compose_fn is not None:
support_label_fn = lambda freq: self.support_label_compose_fn(freq)
else:
support_label_fn = lambda freq: "{:.{places}f}".format(freq, places=self.support_label_decimals)
node_age_summaries = split_distribution.split_node_age_summaries
edge_length_summaries = split_distribution.split_edge_length_summaries
split_freqs = split_distribution.split_frequencies
assert len(self.node_age_summaries_fieldnames) == len(self.summary_stats_fieldnames)
for node in tree:
split_bitmask = node.edge.bipartition.split_bitmask
split_support = split_freqs.get(split_bitmask, 0.0)
if self.support_as_percentages:
split_support = split_support * 100
self._decorate(
target=node,
fieldname="support",
value=split_support,
set_attribute=self.add_support_as_node_attribute,
set_annotation=self.add_support_as_node_annotation,
)
if self.set_support_as_node_label:
node.label = support_label_fn(split_support)
if (self.add_node_age_summaries_as_node_attributes or self.add_node_age_summaries_as_node_annotations) and node_age_summaries:
for fieldname, stats_fieldname in zip(self.node_age_summaries_fieldnames, self.summary_stats_fieldnames):
no_data_value = self.no_data_values.get(stats_fieldname, 0.0)
if not node_age_summaries or split_bitmask not in node_age_summaries:
value = no_data_value
else:
value = node_age_summaries[split_bitmask].get(stats_fieldname, no_data_value)
self._decorate(
target=node,
fieldname=fieldname,
value=value,
set_attribute=self.add_node_age_summaries_as_node_attributes,
set_annotation=self.add_node_age_summaries_as_node_annotations,
)
if (self.add_edge_length_summaries_as_edge_attributes or self.add_edge_length_summaries_as_edge_annotations) and edge_length_summaries:
for fieldname, stats_fieldname in zip(self.edge_length_summaries_fieldnames, self.summary_stats_fieldnames):
no_data_value = self.no_data_values.get(stats_fieldname, 0.0)
if not edge_length_summaries or split_bitmask not in edge_length_summaries:
value = no_data_value
else:
value = edge_length_summaries[split_bitmask].get(stats_fieldname, no_data_value)
self._decorate(
target=node.edge,
fieldname=fieldname,
value=value,
set_attribute=self.add_edge_length_summaries_as_edge_attributes,
set_annotation=self.add_edge_length_summaries_as_edge_annotations,
)
if self.set_edge_lengths is None:
pass
elif self.set_edge_lengths == "keep":
pass
elif self.set_edge_lengths == "support":
node.edge.length = split_support
elif self.set_edge_lengths == "clear":
node.edge.length = None
elif self.set_edge_lengths in ("mean-age", "median-age"):
if not node_age_summaries:
raise ValueError("Node ages not available")
if self.set_edge_lengths == "mean-age":
try:
node.age = node_age_summaries[split_bitmask]["mean"]
except KeyError:
node.age = self.no_data_values.get("mean", 0.0)
elif self.set_edge_lengths == "median-age":
try:
node.age = node_age_summaries[split_bitmask]["median"]
except KeyError:
node.age = self.no_data_values.get("median", 0.0)
else:
raise ValueError(self.set_edge_lengths)
elif self.set_edge_lengths in ("mean-length", "median-length"):
if not edge_length_summaries:
raise ValueError("Edge lengths not available")
if self.set_edge_lengths == "mean-length":
try:
node.edge.length = edge_length_summaries[split_bitmask]["mean"]
except KeyError:
node.edge.length = self.no_data_values.get("mean", 0.0)
elif self.set_edge_lengths == "median-length":
try:
node.edge.length = edge_length_summaries[split_bitmask]["median"]
except KeyError:
node.edge.length = self.no_data_values.get("median", 0.0)
else:
raise ValueError(self.set_edge_lengths)
if self.minimum_edge_length is not None and node.edge.length < self.minimum_edge_length:
node.edge.length = self.minimum_edge_length
else:
raise ValueError(self.set_edge_lengths)
if self.set_edge_lengths in ("mean-age", "median-age"):
tree.set_edge_lengths_from_node_ages(
minimum_edge_length=self.minimum_edge_length,
error_on_negative_edge_lengths=self.error_on_negative_edge_lengths)
elif self.set_edge_lengths not in ("keep", "clear", None) and self.minimum_edge_length is not None:
for node in tree:
if node.edge.length is None:
node.edge.length = self.minimum_edge_length
elif node.edge.length < self.minimum_edge_length:
node.edge.length = self.minimum_edge_length
return tree
###############################################################################
### TreeArray
[docs]
class TreeArray(
taxonmodel.TaxonNamespaceAssociated,
basemodel.MultiReadable,
):
"""
High-performance collection of tree structures.
Storage of minimal tree structural information as represented by toplogy
and edge lengths, minimizing memory and processing time.
This class stores trees as collections of splits and edge lengths. All
other information, such as labels, metadata annotations, etc. will be
discarded. A full |Tree| instance can be reconstructed as needed
from the structural information stored by this class, at the cost of
computation time.
"""
[docs]
class IncompatibleTreeArrayUpdate(Exception):
pass
[docs]
class IncompatibleRootingTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
[docs]
class IncompatibleEdgeLengthsTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
[docs]
class IncompatibleNodeAgesTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
[docs]
class IncompatibleTreeWeightsTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
##############################################################################
## Factory Function
@classmethod
def from_tree_list(cls,
trees,
is_rooted_trees=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=None,
taxon_label_age_map=None,
is_bipartitions_updated=False,
):
taxon_namespace = trees.taxon_namespace
ta = cls(
taxon_namespace=taxon_namespace,
is_rooted_trees=is_rooted_trees,
ignore_edge_lengths=ignore_edge_lengths,
ignore_node_ages=ignore_node_ages,
use_tree_weights=use_tree_weights,
ultrametricity_precision=ultrametricity_precision,
is_force_max_age=is_force_max_age,
taxon_label_age_map=taxon_label_age_map,
)
ta.add_trees(
trees=trees,
is_bipartitions_updated=is_bipartitions_updated)
return ta
##############################################################################
## Life-Cycle
def __init__(self,
taxon_namespace=None,
is_rooted_trees=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=None,
taxon_label_age_map=None,
):
"""
Parameters
----------
taxon_namespace : |TaxonNamespace|
The operational taxonomic unit concept namespace to manage taxon
references.
is_rooted_trees : bool
If not set, then it will be set based on the rooting state of the
first tree added. If |True|, then trying to add an unrooted tree
will result in an error. If |False|, then trying to add a rooted
tree will result in an error.
ignore_edge_lengths : bool
If |True|, then edge lengths of splits will not be stored. If
|False|, then edge lengths will be stored.
ignore_node_ages : bool
If |True|, then node ages of splits will not be stored. If
|False|, then node ages will be stored.
use_tree_weights : bool
If |False|, then tree weights will not be used to weight splits.
"""
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxon_namespace)
# Configuration
self._is_rooted_trees = is_rooted_trees
self.ignore_edge_lengths = ignore_edge_lengths
self.ignore_node_ages = ignore_node_ages
self.use_tree_weights = use_tree_weights
self.default_edge_length_value = 0 # edge.length of |None| gets this value
self.tree_type = treemodel.Tree
self.taxon_label_age_map = taxon_label_age_map
# Storage
self._tree_split_bitmasks = []
self._tree_edge_lengths = []
self._tree_leafset_bitmasks = []
self._tree_weights = []
self._split_distribution = SplitDistribution(
taxon_namespace=self.taxon_namespace,
ignore_edge_lengths=self.ignore_edge_lengths,
ignore_node_ages=self.ignore_node_ages,
ultrametricity_precision=ultrametricity_precision,
is_force_max_age=is_force_max_age,
taxon_label_age_map=self.taxon_label_age_map,
)
##############################################################################
## Book-Keeping
def _get_is_rooted_trees(self):
return self._is_rooted_trees
is_rooted_trees = property(_get_is_rooted_trees)
def _get_split_distribution(self):
return self._split_distribution
split_distribution = property(_get_split_distribution)
def validate_rooting(self, rooting_of_other):
if self._is_rooted_trees is None:
self._is_rooted_trees = rooting_of_other
elif self._is_rooted_trees != rooting_of_other:
if self._is_rooted_trees:
ta = "rooted"
t = "unrooted"
else:
ta = "unrooted"
t = "rooted"
raise error.MixedRootingError("Cannot add {tree_rooting} tree to TreeArray with {tree_array_rooting} trees".format(
tree_rooting=t,
tree_array_rooting=ta))
##############################################################################
## Updating from Another TreeArray
def update(self, other):
if len(self) > 0:
# self.validate_rooting(other._is_rooted_trees)
if self._is_rooted_trees is not other._is_rooted_trees:
raise TreeArray.IncompatibleRootingTreeArrayUpdate("Updating from incompatible TreeArray: 'is_rooted_trees' should be '{}', but is instead '{}'".format(other._is_rooted_trees, self._is_rooted_trees, ))
if self.ignore_edge_lengths is not other.ignore_edge_lengths:
raise TreeArray.IncompatibleEdgeLengthsTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_edge_lengths' is not: {} ".format(other.ignore_edge_lengths, self.ignore_edge_lengths, ))
if self.ignore_node_ages is not other.ignore_node_ages:
raise TreeArray.IncompatibleNodeAgesTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_node_ages' should be '{}', but is instead '{}'".format(other.ignore_node_ages, self.ignore_node_ages))
if self.use_tree_weights is not other.use_tree_weights:
raise TreeArray.IncompatibleTreeWeightsTreeArrayUpdate("Updating from incompatible TreeArray: 'use_tree_weights' should be '{}', but is instead '{}'".format(other.use_tree_weights, self.use_tree_weights))
else:
self._is_rooted_trees = other._is_rooted_trees
self.ignore_edge_lengths = other.ignore_edge_lengths
self.ignore_node_ages = other.ignore_node_ages
self.use_tree_weights = other.use_tree_weights
self._tree_split_bitmasks.extend(other._tree_split_bitmasks)
self._tree_edge_lengths.extend(other._tree_edge_lengths)
self._tree_leafset_bitmasks.extend(other._tree_leafset_bitmasks)
self._tree_weights.extend(other._tree_weights)
self._split_distribution.update(other._split_distribution)
##############################################################################
## Fundamental Tree Accession
[docs]
def add_tree(self,
tree,
is_bipartitions_updated=False,
index=None):
"""
Adds the structure represented by a |Tree| instance to the
collection.
Parameters
----------
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
index : integer
Insert before index.
Returns
-------
index : int
The index of the accession.
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values from ``tree``.
"""
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
self.validate_rooting(tree.is_rooted)
splits, edge_lengths, node_ages = self._split_distribution.count_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
default_edge_length_value=self.default_edge_length_value)
# pre-process splits
splits = tuple(splits)
# pre-process edge lengths
if self.ignore_edge_lengths:
# edge_lengths = tuple( [None] * len(splits) )
edge_lengths = tuple( None for x in range(len(splits)) )
else:
assert len(splits) == len(edge_lengths), "Unequal vectors:\n Splits: {}\n Edges: {}\n".format(splits, edge_lengths)
edge_lengths = tuple(edge_lengths)
# pre-process weights
if tree.weight is not None and self.use_tree_weights:
weight_to_use = float(tree.weight)
else:
weight_to_use = 1.0
# accession info
if index is None:
index = len(self._tree_split_bitmasks)
self._tree_split_bitmasks.append(splits)
self._tree_leafset_bitmasks.append(tree.seed_node.edge.bipartition.leafset_bitmask)
self._tree_edge_lengths.append(edge_lengths)
self._tree_weights.append(weight_to_use)
else:
self._tree_split_bitmasks.insert(index, splits)
self._tree_leafset_bitmasks.insert(index,
tree.seed_node.edge.bipartition.leafset_bitmask)
self._tree_edge_lengths.insert(index, edge_lengths)
self._tree_weights.insert(index, weight_to_use)
return index, splits, edge_lengths, weight_to_use
[docs]
def add_trees(self, trees, is_bipartitions_updated=False):
"""
Adds multiple structures represneted by an iterator over or iterable of
|Tree| instances to the collection.
Parameters
----------
trees : iterator over or iterable of |Tree| instances
An iterator over or iterable of |Tree| instances. Thess must
have the same rooting state as all the other trees accessioned into
this collection as well as that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
"""
for tree in trees:
self.add_tree(tree,
is_bipartitions_updated=is_bipartitions_updated)
##############################################################################
## I/O
[docs]
def read_from_files(self,
files,
schema,
**kwargs):
r"""
Adds multiple structures from one or more external file sources to the
collection.
Parameters
----------
files : iterable of strings and/or file objects
A list or some other iterable of file paths or file-like objects
(string elements will be assumed to be paths to files, while all
other types of elements will be assumed to be file-like
objects opened for reading).
schema : string
The data format of the source. E.g., "nexus", "newick", "nexml".
\*\*kwargs : keyword arguments
These will be passed directly to the underlying schema-specific
reader implementation.
"""
if "taxon_namespace" in kwargs:
if kwargs["taxon_namespace"] is not self.taxon_namespace:
raise ValueError("TaxonNamespace object passed as keyword argument is not the same as self's TaxonNamespace reference")
kwargs.pop("taxon_namespace")
target_tree_offset = kwargs.pop("tree_offset", 0)
tree_yielder = self.tree_type.yield_from_files(
files=files,
schema=schema,
taxon_namespace=self.taxon_namespace,
**kwargs)
current_source_index = None
current_tree_offset = None
for tree_idx, tree in enumerate(tree_yielder):
current_yielder_index = tree_yielder.current_file_index
if current_source_index != current_yielder_index:
current_source_index = current_yielder_index
current_tree_offset = 0
if current_tree_offset >= target_tree_offset:
self.add_tree(tree=tree, is_bipartitions_updated=False)
current_tree_offset += 1
def _parse_and_add_from_stream(self,
stream,
schema,
**kwargs):
cur_size = len(self._tree_split_bitmasks)
self.read_from_files(files=[stream], schema=schema, **kwargs)
new_size = len(self._tree_split_bitmasks)
return new_size - cur_size
[docs]
def read(self, **kwargs):
"""
Add |Tree| objects to existing |TreeList| from data source providing
one or more collections of trees.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tree_array = dendropy.TreeArray()
tree_array.read(
file=open('treefile.tre', 'rU'),
schema="newick",
tree_offset=100)
tree_array.read(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tree_array.read(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tree_array.read(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return basemodel.MultiReadable._read_from(self, **kwargs)
##############################################################################
## Container (List) Interface
[docs]
def append(self, tree, is_bipartitions_updated=False):
"""
Adds a |Tree| instance to the collection before position given
by ``index``.
Parameters
----------
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
"""
return self.add_tree(tree=tree,
is_bipartitions_updated=is_bipartitions_updated)
[docs]
def insert(self, index, tree, is_bipartitions_updated=False):
"""
Adds a |Tree| instance to the collection before position given
by ``index``.
Parameters
----------
index : integer
Insert before index.
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
Returns
-------
index : int
The index of the accession.
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values ``tree``.
"""
return self.add_tree(tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
index=index)
[docs]
def extend(self, tree_array):
"""
Accession of data from ``tree_array`` to self.
Parameters
----------
tree_array : |TreeArray|
A |TreeArray| instance from which to add data.
"""
assert self.taxon_namespace is tree_array.taxon_namespace
assert self._is_rooted_trees is tree_array._is_rooted_trees
assert self.ignore_edge_lengths is tree_array.ignore_edge_lengths
assert self.ignore_node_ages is tree_array.ignore_node_ages
assert self.use_tree_weights is tree_array.use_tree_weights
self._tree_split_bitmasks.extend(tree_array._tree_split_bitmasks)
self._tree_edge_lengths.extend(tree_array._tree_edge_lengths)
self._tree_weights.extend(tree_array._tree_weights)
self._split_distribution.update(tree_array._split_distribution)
return self
[docs]
def __iadd__(self, tree_array):
"""
Accession of data from ``tree_array`` to self.
Parameters
----------
tree_array : |TreeArray|
A |TreeArray| instance from which to add data.
"""
return self.extend(tree_array)
[docs]
def __add__(self, other):
"""
Creates and returns new |TreeArray|.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
tlist : |TreeArray| object
|TreeArray| object containing clones of |Tree| objects
in ``self`` and ``other``.
"""
ta = TreeArray(
taxon_namespace=self.taxon_namespace,
is_rooted_trees=self._is_rooted_trees,
ignore_edge_lengths=self.ignore_edge_lengths,
ignore_node_ages=self.ignore_node_ages,
use_tree_weights=self.use_tree_weights,
ultrametricity_precision=self._split_distribution.ultrametricity_precision,
)
ta.default_edge_length_value = self.default_edge_length_value
ta.tree_type = self.tree_type
ta += self
ta += other
return ta
def __contains__(self, splits):
# expensive!!
return tuple(splits) in self._tree_split_bitmasks
def __delitem__(self, index):
raise NotImplementedError
# expensive!!
# tree_split_bitmasks = self._trees_splits[index]
### TODO: remove this "tree" from underlying splits distribution
# for split in tree_split_bitmasks:
# self._split_distribution.split_counts[split] -= 1
# etc.
# becomes complicated because tree weights need to be updated etc.
# del self._tree_split_bitmasks[index]
# del self._tree_edge_lengths[index]
# return
[docs]
def __iter__(self):
"""
Yields pairs of (split, edge_length) from the store.
"""
for split, edge_length in zip(self._tree_split_bitmasks, self._tree_edge_lengths):
yield split, edge_length
def __reversed__(self):
raise NotImplementedError
def __len__(self):
return len(self._tree_split_bitmasks)
def __getitem__(self, index):
raise NotImplementedError
# """
# Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding
# to the "tree" at ``index``.
# """
# return self._tree_split_bitmasks[index], self._tree_edge_lengths[index]
def __setitem__(self, index, value):
raise NotImplementedError
def clear(self):
raise NotImplementedError
self._tree_split_bitmasks = []
self._tree_edge_lengths = []
self._tree_leafset_bitmasks = []
self._split_distribution.clear()
def index(self, splits):
raise NotImplementedError
return self._tree_split_bitmasks.index(splits)
def pop(self, index=-1):
raise NotImplementedError
def remove(self, tree):
raise NotImplementedError
def reverse(self):
raise NotImplementedError
def sort(self, key=None, reverse=False):
raise NotImplementedError
##############################################################################
## Accessors/Settors
[docs]
def get_split_bitmask_and_edge_tuple(self, index):
"""
Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding
to the "tree" at ``index``.
"""
return self._tree_split_bitmasks[index], self._tree_edge_lengths[index]
##############################################################################
## Calculations
[docs]
def calculate_log_product_of_split_supports(self,
include_external_splits=False,
):
"""
Calculates the log product of split support for each of the trees in
the collection.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : tuple(list[numeric], integer)
Returns a tuple, with the first element being the list of scores
and the second being the index of the highest score. The element order
corresponds to the trees accessioned in the collection.
"""
assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks)
scores = []
max_score = None
max_score_tree_idx = None
split_frequencies = self._split_distribution.split_frequencies
for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)):
log_product_of_split_support = 0.0
for split_bitmask in split_bitmasks:
if (include_external_splits
or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST)
or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask)
):
split_support = split_frequencies.get(split_bitmask, 0.0)
if split_support:
log_product_of_split_support += math.log(split_support)
if max_score is None or max_score < log_product_of_split_support:
max_score = log_product_of_split_support
max_score_tree_idx = tree_idx
scores.append(log_product_of_split_support)
return scores, max_score_tree_idx
[docs]
def maximum_product_of_split_support_tree(self,
include_external_splits=False,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Return the tree with that maximizes the product of split supports, also
known as the "Maximum Clade Credibility Tree" or MCCT.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the product of split supports.
"""
scores, max_score_tree_idx = self.calculate_log_product_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self.restore_tree(
index=max_score_tree_idx,
**split_summarization_kwargs)
tree.log_product_of_split_support = scores[max_score_tree_idx]
if summarize_splits:
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=True,
**split_summarization_kwargs
)
return tree
[docs]
def calculate_sum_of_split_supports(self,
include_external_splits=False,
):
"""
Calculates the *sum* of split support for all trees in the
collection.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : tuple(list[numeric], integer)
Returns a tuple, with the first element being the list of scores
and the second being the index of the highest score. The element order
corresponds to the trees accessioned in the collection.
"""
assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks)
scores = []
max_score = None
max_score_tree_idx = None
split_frequencies = self._split_distribution.split_frequencies
for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)):
sum_of_support = 0.0
for split_bitmask in split_bitmasks:
if (include_external_splits
or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST)
or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask)
):
split_support = split_frequencies.get(split_bitmask, 0.0)
sum_of_support += split_support
if max_score is None or max_score < sum_of_support:
max_score = sum_of_support
max_score_tree_idx = tree_idx
scores.append(sum_of_support)
return scores, max_score_tree_idx
[docs]
def maximum_sum_of_split_support_tree(self,
include_external_splits=False,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Return the tree with that maximizes the *sum* of split supports.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mst_tree : Tree
Tree that maximizes the sum of split supports.
"""
scores, max_score_tree_idx = self.calculate_sum_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self.restore_tree(
index=max_score_tree_idx,
**split_summarization_kwargs
)
tree.sum_of_split_support = scores[max_score_tree_idx]
if summarize_splits:
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=True,
**split_summarization_kwargs
)
return tree
def collapse_edges_with_less_than_minimum_support(self,
tree,
min_freq=constants.GREATER_THAN_HALF,
):
return self.split_distribution.collapse_edges_with_less_than_minimum_support(
tree=tree,
min_freq=min_freq)
[docs]
def consensus_tree(self,
min_freq=constants.GREATER_THAN_HALF,
summarize_splits=True,
**split_summarization_kwargs
):
r"""
Returns a consensus tree from splits in ``self``.
Parameters
----------
min_freq : real
The minimum frequency of a split in this distribution for it to be
added to the tree.
is_rooted : bool
Should tree be rooted or not? If *all* trees counted for splits are
explicitly rooted or unrooted, then this will default to |True| or
|False|, respectively. Otherwise it defaults to |None|.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
Returns
-------
t : consensus tree
"""
tree = self._split_distribution.consensus_tree(
min_freq=min_freq,
is_rooted=self.is_rooted_trees,
summarize_splits=summarize_splits,
**split_summarization_kwargs
)
# return self._split_distribution.consensus_tree(*args, **kwargs)
return tree
##############################################################################
## Mapping of Split Support
def summarize_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
**kwargs):
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
**kwargs
)
##############################################################################
## Tree Reconstructions
def restore_tree(self,
index,
summarize_splits_on_tree=False,
**split_summarization_kwargs
):
split_bitmasks = self._tree_split_bitmasks[index]
if self.ignore_edge_lengths:
split_edge_lengths = None
else:
assert len(self._tree_split_bitmasks) == len(self._tree_edge_lengths)
edge_lengths = self._tree_edge_lengths[index]
split_edge_lengths = dict(zip(split_bitmasks, edge_lengths))
tree = self.tree_type.from_split_bitmasks(
split_bitmasks=split_bitmasks,
taxon_namespace=self.taxon_namespace,
is_rooted=self._is_rooted_trees,
split_edge_lengths=split_edge_lengths,
)
# if update_bipartitions:
# tree.encode_bipartitions()
if summarize_splits_on_tree:
split_summarization_kwargs["is_bipartitions_updated"] = True
self._split_distribution.summarize_splits_on_tree(
tree=tree,
**split_summarization_kwargs)
return tree
##############################################################################
## Topology Frequencies
[docs]
def split_bitmask_set_frequencies(self):
"""
Returns a dictionary with keys being sets of split bitmasks and values
being the frequency of occurrence of trees represented by those split
bitmask sets in the collection.
"""
split_bitmask_set_count_map = collections.Counter()
assert len(self._tree_split_bitmasks) == len(self._tree_weights)
for split_bitmask_set, weight in zip(self._tree_split_bitmasks, self._tree_weights):
split_bitmask_set_count_map[frozenset(split_bitmask_set)] += (1.0 * weight)
split_bitmask_set_freqs = {}
normalization_weight = self._split_distribution.calc_normalization_weight()
# print("===> {}".format(normalization_weight))
for split_bitmask_set in split_bitmask_set_count_map:
split_bitmask_set_freqs[split_bitmask_set] = split_bitmask_set_count_map[split_bitmask_set] / normalization_weight
return split_bitmask_set_freqs
[docs]
def bipartition_encoding_frequencies(self):
"""
Returns a dictionary with keys being bipartition encodings of trees
(as ``frozenset`` collections of |Bipartition| objects) and
values the frequency of occurrence of trees represented by that
encoding in the collection.
"""
# split_bitmask_set_freqs = self.split_bitmask_set_frequencies()
# bipartition_encoding_freqs = {}
# for split_bitmask_set, freq in split_bitmask_set_freqs.items():
# bipartition_encoding = []
# inferred_leafset = max(split_bitmask_set)
# for split_bitmask in split_bitmask_set:
# bipartition = treemodel.Bipartition(
# bitmask=split_bitmask,
# tree_leafset_bitmask=inferred_leafset,
# is_rooted=self._is_rooted_trees,
# is_mutable=False,
# compile_bipartition=True,
# )
# bipartition_encoding.append(bipartition)
# bipartition_encoding_freqs[frozenset(bipartition_encoding)] = freq
# return bipartition_encoding_freqs
bipartition_encoding_freqs = {}
topologies = self.topologies()
for tree in topologies:
bipartition_encoding_freqs[ frozenset(tree.encode_bipartitions()) ] = tree.frequency
return bipartition_encoding_freqs
[docs]
def topologies(self,
sort_descending=None,
frequency_attr_name="frequency",
frequency_annotation_name="frequency",
):
"""
Returns a |TreeList| instance containing the reconstructed tree
topologies (i.e. |Tree| instances with no edge weights) in the
collection, with the frequency added as an attributed.
Parameters
----------
sort_descending : bool
If |True|, then topologies will be sorted in *descending* frequency
order (i.e., topologies with the highest frequencies will be listed
first). If |False|, then they will be sorted in *ascending*
frequency. If |None| (default), then they will not be sorted.
frequency_attr_name : str
Name of attribute to add to each |Tree| representing
the frequency of that topology in the collection. If |None|
then the attribute will not be added.
frequency_annotation_name : str
Name of annotation to add to the annotations of each |Tree|,
representing the frequency of that topology in the collection. The
value of this annotation will be dynamically-bound to the attribute
specified by ``frequency_attr_name`` unless that is |None|. If
``frequency_annotation_name`` is |None| then the annotation will not
be added.
"""
if sort_descending is not None and frequency_attr_name is None:
raise ValueError("Attribute needs to be set on topologies to enable sorting")
split_bitmask_set_freqs = self.split_bitmask_set_frequencies()
topologies = TreeList(taxon_namespace=self.taxon_namespace)
for split_bitmask_set, freq in split_bitmask_set_freqs.items():
tree = self.tree_type.from_split_bitmasks(
split_bitmasks=split_bitmask_set,
taxon_namespace=self.taxon_namespace,
is_rooted=self._is_rooted_trees,
)
if frequency_attr_name is not None:
setattr(tree, frequency_attr_name, freq)
if frequency_annotation_name is not None:
tree.annotations.add_bound_attribute(
attr_name=frequency_attr_name,
annotation_name=frequency_annotation_name,
)
else:
tree.annotations.add_new(
frequency_annotation_name,
freq,
)
topologies.append(tree)
if sort_descending is not None:
topologies.sort(key=lambda t: getattr(t, frequency_attr_name), reverse=sort_descending)
return topologies