#! /usr/bin/env python
# -*- coding: utf-8 -*-
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Taxon-to-taxon phylogenetic distances.
"""
import math
import collections
import csv
from dendropy.calculate import statistics
from dendropy.utility import GLOBAL_RNG
from dendropy.utility import container
from dendropy.utility import error
import dendropy
[docs]
class PhylogeneticDistanceMatrix(object):
"""
Calculates and maintains patristic distance information of taxa on a tree.
"""
[docs]
@classmethod
def from_tree(cls, tree, *args, **kwargs):
"""
Creates and returns a |PhylogeneticDistanceMatrix| based
on the given tree.
Note that this creates a "snapshot" of the current state of the tree.
Subsequent changes to the tree will not be reflected in
|PhylogeneticDistanceMatrix| instances previously created.
Also note that syntactically you may prefer to use::
pdm = tree.phylogenetic_distance_matrix()
instead of::
pdm = PhylogeneticDistanceMatrix.from_tree(tree)
Parameters
----------
tree : a |Tree| instance
The |Tree| from which to get the phylogenetic distances.
Returns
-------
pdm : A |PhylogeneticDistanceMatrix| instance
Examples
--------
::
import dendropy
tree = dendropy.Tree.get(path="tree.nex",
schema="nexus")
pdm1 = dendropy.PhylogeneticDistanceMatrix.from_tree(tree)
# following is equivalent to above and probably preferred:
pdm2 = tree.phylogenetic_distance_matrix()
"""
pdm = cls(*args, **kwargs)
pdm.compile_from_tree(tree=tree)
return pdm
[docs]
@classmethod
def from_csv(cls,
src,
taxon_namespace=None,
is_allow_new_taxa=None,
is_first_row_column_names=True,
is_first_column_row_names=True,
default_data_type=float,
label_transform_fn=None,
**csv_reader_kwargs
):
r"""
Instantiates a new PhylogeneticDistanceMatrix instance with data
from an external source.
Parameters
----------
src : file or file-like
Source of data. This is a token delimited-file (e.g., a
comma-delimited or tab-delimited file) providing a table which
lists taxon labels in both rows and columns. The cells of the table
are numeric (typically real) values that indicate the distance
between the taxa of the current row and column. Note that *only*
the upper right section of the table is considered. The diagonals
values are typically zeroes and, in either case, ignored along with
the lower diagonal. Despite being ignored by the
PhylogeneticDistanceMatrix object, the values are parsed by the
underlying reader and thus have to be valid numerical values.
taxon_namespace : |TaxonNamespace| instance
The taxon namespace with which to manage taxa. If this has
not already been pre-populated with the taxon names, then
``is_allow_new_taxa`` should be set to |True|.
is_allow_new_taxa : bool
If |False|: we do *not* expect to encounter any new taxa in the
data file, and it is an error if we do. If |True|: we do expect to
encounter new taxa in the data file. The default value of this
depends on the value passed to ``taxon_namespace``. If
``taxon_namespace`` is ``None`` or an empty |TaxonNamespace|
instance, then unless explicitly set to |False|,
``is_allow_new_taxa`` will default to |True|: allowing of creation
of new taxa corresponding to labels found in the data source. On
the other hand, if ``taxon_namespace`` is not None and its value is
a |TaxonNamespace| instance with at least one taxon, unless
explicitly set to |True|, ``is_allow_new_taxa`` will default to
|False|, and it will be an error if taxon labels are found in the
data source that do not correspond (exactly) to |Taxon| objects
defined in the taxon namespace. This is to err on the side of
caution, to avoid (or rather, highlight) problems due to incorrect
or mismatching labels between the data source and the current taxon
namespace.
is_first_row_column_names : bool
By default |True|: assumes that first row lists the taxon names.
Set to |False| if there is no header row.
is_first_column_row_names : bool
By default |True|: assumes that first column lists the taxon names.
Set to |False| if there is now row name column.
label_transform_fn : function object
If not None, this should be a function object that takes a string
as an argument and returns another string. This function will be
applied to row and column labels before they are matched to taxon
labels in the |TaxonNamespace| instance given by
``taxon_namespace``.
\*\*csv_reader_kwargs : keyword arguments
This arguments will be passed to the underlying CSV reader.
The most important one is probably 'delimiter'.
Returns
-------
pdm : A |PhylogeneticDistanceMatrix| instance
Examples
--------
::
import dendropy
pdm1 = dendropy.PhylogeneticDistanceMatrix.from_csv(
src=open("data.csv"),
delimiter=",")
pdm2 = dendropy.PhylogeneticDistanceMatrix.from_csv(
src=open("data.tsv"),
delimiter="\t")
"""
if taxon_namespace is None:
taxon_namespace = dendropy.TaxonNamespace()
if len(taxon_namespace) == 0 and is_allow_new_taxa is None:
is_allow_new_taxa = True
old_taxon_namespace_mutability = taxon_namespace.is_mutable
taxon_namespace.is_mutable = is_allow_new_taxa
data_table = container.DataTable.from_csv(
src,
is_first_row_column_names=is_first_row_column_names,
is_first_column_row_names=is_first_column_row_names,
default_data_type=default_data_type,
label_transform_fn=label_transform_fn,
**csv_reader_kwargs
)
if not is_first_row_column_names and not is_first_column_row_names:
distances = {}
seen_row_labels = set()
seen_row_taxa_labels = set()
for i1, t1_label in enumerate(data_table.row_name_iter()):
if len(taxon_namespace) <= i1:
t1 = taxon_namespace.require_taxon(label=t1_label)
else:
t1 = taxon_namespace[i1]
seen_row_labels.add(t1_label)
assert t1.label not in seen_row_taxa_labels
seen_row_taxa_labels.add(t1.label)
distances[t1] = {}
for i2, t2_label in enumerate(data_table.column_name_iter()):
if t2_label in seen_row_labels:
continue
if len(taxon_namespace) <= i2:
t2 = taxon_namespace.require_taxon(label=t2_label)
else:
t2 = taxon_namespace[i2]
distances[t1][t2] = data_table[t1_label, t2_label]
else:
distances = {}
seen_taxa = set()
taxa = []
if is_first_column_row_names:
name_iter = data_table.row_name_iter()
else:
name_iter = data_table.column_name_iter()
for label in name_iter:
t1 = taxon_namespace.require_taxon(label=label)
assert t1 not in seen_taxa
seen_taxa.add(t1)
taxa.append(t1)
seen_row_taxa = set()
for i1, t1 in enumerate(taxa):
assert t1 in seen_taxa
seen_row_taxa.add(t1)
distances[t1] = {}
for i2, t2 in enumerate(taxa):
if t2 in seen_row_taxa:
continue
distances[t1][t2] = data_table[i1, i2]
# else:
# raise NotImplementedError()
taxon_namespace.is_mutable = old_taxon_namespace_mutability
pdm = cls()
pdm.compile_from_dict(
distances=distances,
taxon_namespace=taxon_namespace)
return pdm
def __init__(self,
is_store_path_edges=False):
self.clear()
self.is_store_path_edges = is_store_path_edges
def clear(self):
self.taxon_namespace = None
self._mapped_taxa = set()
self._all_distinct_mapped_taxa_pairs = set()
self._tree_length = None
self._num_edges = None
self._taxon_phylogenetic_distances = {}
self._taxon_phylogenetic_path_steps = {}
self._taxon_phylogenetic_path_edges = {}
self._mrca = {}
[docs]
def compile_from_tree(self, tree):
"""
Calculates the distances. Note that the path length (in number of
steps) between taxa that span the root will be off by one if
the tree is unrooted.
"""
self.clear()
self.taxon_namespace = tree.taxon_namespace
# for i1, t1 in enumerate(self.taxon_namespace):
# self._taxon_phylogenetic_distances[t1] = {}
# self._taxon_phylogenetic_path_steps[t1] = {}
# self._mrca[t1] = {}
self._tree_length = 0.0
self._num_edges = 0
if self.is_store_path_edges:
default_pedges = []
else:
default_pedges = None
for node in tree.postorder_node_iter():
try:
self._tree_length += node.edge.length
except TypeError: # None for edge length
pass
self._num_edges += 1
children = node.child_nodes()
if len(children) == 0:
node.desc_paths = {node : (0,0, default_pedges)}
else:
node.desc_paths = {}
for cidx1, c1 in enumerate(children):
for desc1, (desc1_plen, desc1_psteps, desc1_pedges) in c1.desc_paths.items():
if c1.edge_length is None:
c1_edge_length = 0.0
else:
c1_edge_length = c1.edge.length
if self.is_store_path_edges:
pedges = list(desc1_pedges + [c1.edge])
else:
pedges = default_pedges
node.desc_paths[desc1] = (desc1_plen + c1_edge_length, desc1_psteps + 1, pedges)
assert desc1.taxon is not None
if desc1.taxon not in self._taxon_phylogenetic_distances:
self._mapped_taxa.add(desc1.taxon)
self._taxon_phylogenetic_distances[desc1.taxon] = {}
self._taxon_phylogenetic_distances[desc1.taxon][desc1.taxon] = 0.0
self._taxon_phylogenetic_path_steps[desc1.taxon] = {}
self._taxon_phylogenetic_path_steps[desc1.taxon][desc1.taxon] = 0
if self.is_store_path_edges:
self._taxon_phylogenetic_path_edges[desc1.taxon] = {}
self._taxon_phylogenetic_path_edges[desc1.taxon][desc1.taxon] = []
self._mrca[desc1.taxon] = {desc1.taxon: desc1}
for c2 in children[cidx1+1:]:
for desc2, (desc2_plen, desc2_psteps, desc2_pedges) in c2.desc_paths.items():
self._mapped_taxa.add(desc2.taxon)
self._mrca[desc1.taxon][desc2.taxon] = c1.parent_node
# self._all_distinct_mapped_taxa_pairs.add( tuple([desc1.taxon, desc2.taxon]) )
self._all_distinct_mapped_taxa_pairs.add( frozenset([desc1.taxon, desc2.taxon]) )
if c2.edge_length is None:
c2_edge_length = 0.0
else:
c2_edge_length = c2.edge.length
pat_dist = node.desc_paths[desc1][0] + desc2_plen + c2_edge_length
self._taxon_phylogenetic_distances[desc1.taxon][desc2.taxon] = pat_dist
path_steps = node.desc_paths[desc1][1] + desc2_psteps + 1
self._taxon_phylogenetic_path_steps[desc1.taxon][desc2.taxon] = path_steps
if self.is_store_path_edges:
pedges = tuple(node.desc_paths[desc1][2] + [c2.edge] + desc2_pedges[::-1])
self._taxon_phylogenetic_path_edges[desc1.taxon][desc2.taxon] = pedges
del(c1.desc_paths)
self._mirror_lookups()
# assert self._tree_length == tree.length()
def compile_from_dict(self, distances, taxon_namespace):
self.clear()
self.taxon_namespace = taxon_namespace
for t1 in distances:
self._mapped_taxa.add(t1)
self._taxon_phylogenetic_distances[t1] = {}
for t2 in distances[t1]:
self._taxon_phylogenetic_distances[t1][t2] = distances[t1][t2]
self._mirror_lookups()
def _mirror_lookups(self):
for ddata in (
self._taxon_phylogenetic_distances,
self._taxon_phylogenetic_path_steps,
self._mrca,
):
for taxon1 in ddata:
for taxon2 in ddata[taxon1]:
# assert taxon1 is not taxon2
if taxon2 not in ddata:
ddata[taxon2] = {}
ddata[taxon2][taxon1] = ddata[taxon1][taxon2]
for taxon1 in self._taxon_phylogenetic_path_edges:
for taxon2 in self._taxon_phylogenetic_path_edges:
if taxon2 not in self._taxon_phylogenetic_path_edges:
self._taxon_phylogenetic_path_edges[taxon2][taxon1] = {}
if taxon1 not in self._taxon_phylogenetic_path_edges[taxon2]:
self._taxon_phylogenetic_path_edges[taxon2][taxon1] = tuple(reversed(self._taxon_phylogenetic_path_edges[taxon1][taxon2]))
def __eq__(self, o):
if self.taxon_namespace is not o.taxon_namespace:
return False
return (True
and (self._mapped_taxa == o._mapped_taxa)
and (self._all_distinct_mapped_taxa_pairs == o._all_distinct_mapped_taxa_pairs)
and (self._taxon_phylogenetic_distances == o._taxon_phylogenetic_distances)
and (self._taxon_phylogenetic_path_steps == o._taxon_phylogenetic_path_steps)
and (self._taxon_phylogenetic_path_edges == o._taxon_phylogenetic_path_edges)
and (self._mrca == o._mrca)
and (self._tree_length == o._tree_length)
and (self._num_edges == o._num_edges)
)
def __hash__(self):
return id(self)
def __call__(self, taxon1, taxon2):
return self.patristic_distance(taxon1, taxon2)
def __copy__(self):
return self.clone()
def __iter__(self):
for taxon in self._taxon_phylogenetic_distances:
yield taxon
def clone(self):
o = self.__class__()
o.taxon_namespace = self.taxon_namespace
o._mapped_taxa = set(self._mapped_taxa)
o._all_distinct_mapped_taxa_pairs = set(self._all_distinct_mapped_taxa_pairs)
o._tree_length = self._tree_length
o._num_edges = self._num_edges
for src, dest in (
(self._taxon_phylogenetic_distances, o._taxon_phylogenetic_distances,),
(self._taxon_phylogenetic_path_steps, o._taxon_phylogenetic_path_steps,),
(self._taxon_phylogenetic_path_edges, o._taxon_phylogenetic_path_edges,),
(self._mrca, o._mrca,),
):
for t1 in src:
dest[t1] = {}
for t2 in src[t1]:
dest[t1][t2] = src[t1][t2]
return o
[docs]
def mrca(self, taxon1, taxon2):
"""
Returns MRCA of two taxon objects.
"""
return self._mrca[taxon1][taxon2]
[docs]
def distance(self,
taxon1,
taxon2,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
"""
Returns distance between taxon1 and taxon2.
"""
if is_weighted_edge_distances:
return self.patristic_distance(taxon1, taxon2, is_normalize_by_tree_size=is_normalize_by_tree_size)
else:
return self.path_edge_count(taxon1, taxon2, is_normalize_by_tree_size=is_normalize_by_tree_size)
[docs]
def patristic_distance(self, taxon1, taxon2, is_normalize_by_tree_size=False):
"""
Returns patristic distance between two taxon objects.
"""
if taxon1 is taxon2:
return 0.0
d = self._taxon_phylogenetic_distances[taxon1][taxon2]
if is_normalize_by_tree_size:
return d / self._tree_length
else:
return d
[docs]
def path_edge_count(self, taxon1, taxon2, is_normalize_by_tree_size=False):
"""
Returns the number of edges between two taxon objects.
"""
if taxon1 is taxon2:
return 0
d = self._taxon_phylogenetic_path_steps[taxon1][taxon2]
if is_normalize_by_tree_size:
return float(d) / self._num_edges
else:
return d
[docs]
def path_edges(self, taxon1, taxon2):
"""
Returns the edges between two taxon objects.
"""
return self._taxon_phylogenetic_path_edges[taxon1][taxon2]
[docs]
def distances(self,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
"""
Returns list of patristic distances.
"""
dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
)
results = []
for t1, t2 in self._all_distinct_mapped_taxa_pairs:
results.append(dmatrix[t1][t2]/normalization_factor)
return results
def max_pairwise_distance_taxa(self,
is_weighted_edge_distances=True):
if is_weighted_edge_distances:
dists = self._taxon_phylogenetic_distances
else:
dists = self._taxon_phylogenetic_path_steps
max_dist = None
max_dist_taxa = None
for t1, t2 in self._all_distinct_mapped_taxa_pairs:
pat_dist = dists[t1][t2]
if max_dist is None or pat_dist > max_dist:
max_dist = pat_dist
max_dist_taxa = (t1, t2)
return max_dist_taxa
[docs]
def sum_of_distances(self,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
"""
Returns sum of patristic distances on tree.
"""
return sum(self.distances(is_weighted_edge_distances=is_weighted_edge_distances,is_normalize_by_tree_size=is_normalize_by_tree_size))
[docs]
def taxon_iter(self, filter_fn=None):
"""
Iterates over taxa in matrix. Note that this could be a subset of the taxa in
the associated taxon namespace.
"""
for t1 in self._mapped_taxa:
if not filter_fn or filter_fn(t1):
yield t1
[docs]
def distinct_taxon_pair_iter(self, filter_fn=None):
"""
Iterates over all distinct pairs of taxa in matrix.
"""
for t1, t2 in self._all_distinct_mapped_taxa_pairs:
if not filter_fn or (filter_fn(t1) and filter_fn(t2)):
yield t1, t2
[docs]
def mean_pairwise_distance(self,
filter_fn=None,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
r"""
Calculates the phylogenetic ecology statistic "MPD"[1,2] for the tree
(only considering taxa for which ``filter_fn`` returns True when
applied if ``filter_fn`` is specified).
The mean pairwise distance (mpd) is given by:
.. math::
mpd = \frac{ \sum_{i}^{n} \sum_{j}^{n} \delta_{i,j} }{n \choose 2},
where :math:`i \neq j`, :math:`\delta_{i,j}` is the phylogenetic
distance between species :math:`i` and :math:`j`, and :math:`n` is the number
of species in the sample.
Parameters
----------
filter_fn : function object or None
If |None|, then all leaves will be considered. Otherwise should
be a function object that takes a Taxon instance as an argument and
returns |True| if it is to be included in the calculation or
|False| otherwise.
In trees sampled from multiple communites, ``filter_fn`` can be
used to restrict the calculation to only one community based on
some criteria.
is_weighted_edge_distances : bool
If |True| then the edge-weighted distance, i.e., considering edge
lengths, is returned. Otherwise the the path steps or the number of
edges rather then the sum of is_weighted_edge_distances edges, connecting two
taxa is considered.
is_normalize_by_tree_size : bool
If |True| then the results are normalized by the total tree length
or steps/edges (depending on whether edge-weighted or unweighted
distances are used, respectively). Otherwise, raw distances are
used.
Returns
-------
mpd : float
The Mean Pairwise Distance (MPD) statistic for the daata.
Examples
--------
::
import dendropy
tree = dendropy.Tree.get(path="data.nex",
schema="nexus")
pdm = dendropy.PhylogeneticDistanceMatrix(tree)
# consider all tips
mpd1 = pdm.mean_pairwise_distance()
# only tips within the same community, based on the node annotation
# "community"
mpds_by_community = {}
for community_label in ("1", "2", "3",):
filter_fn = lambda x: x.annotations["community"] == community_label
mpd = pdm.mean_pairwise_distance(filter_fn=filter_fn)
mpds_by_community[community_label] = mpd
References
----------
[1] Webb, C.O. 2000. Exploring the phylogenetic structure of
ecological communities: An example for rainforest trees. The
American Naturalist 156: 145-155.
[2] Swenson, N.G. Functional and Phylogenetic Ecology in R.
"""
comparison_regime = self.distinct_taxon_pair_iter(filter_fn=filter_fn)
return self._calculate_mean_pairwise_distance(
comparison_regime=comparison_regime,
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
)
[docs]
def mean_nearest_taxon_distance(self,
filter_fn=None,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
r"""
Calculates the phylogenetic ecology statistic "MNTD"[1,2] for the tree
(only considering taxa for which ``filter_fn`` returns True when
applied if ``filter_fn`` is specified).
The mean nearest taxon distance (mntd) is given by:
.. math::
mntd = \frac{ \sum_{i}^{n} min(\delta_{i,j}) }{n},
where :math:`i \neq j`, :math:`\delta_{i,j}` is the phylogenetic
distance between species :math:`i` and :math:`j`, and :math:`n` is the number
of species in the sample.
Parameters
----------
filter_fn : function object or None
If |None|, then all leaves will be considered. Otherwise should
be a function object that takes a Taxon instance as an argument and
returns |True| if it is to be included in the calculation or
|False| otherwise.
In trees sampled from multiple communites, ``filter_fn`` can be
used to restrict the calculation to only one community based on
some criteria.
is_weighted_edge_distances : bool
If |True| then the edge-weighted distance, i.e., considering edge
lengths, is returned. Otherwise the the path steps or the number of
edges rather then the sum of is_weighted_edge_distances edges, connecting two
taxa is considered.
is_normalize_by_tree_size : bool
If |True| then the results are normalized by the total tree length
or steps/edges (depending on whether edge-weighted or unweighted
distances are used, respectively). Otherwise, raw distances are
used.
Returns
-------
mntd : float
The Mean Nearest Taxon Distance (MNTD) statistic for the daata.
Examples
--------
::
import dendropy
tree = dendropy.Tree.get(path="data.nex",
schema="nexus")
pdm = dendropy.PhylogeneticDistanceMatrix(tree)
# consider all tips
mntd = pdm.mean_nearest_taxon_distance()
# only tips within the same community, based on the node annotation
# "community"
mntds_by_community = {}
for community_label in ("1", "2", "3",):
filter_fn = lambda x: x.annotations["community"] == community_label
mntd = pdm.mean_pairwise_distance(filter_fn=filter_fn)
mntds_by_community[community_label] = mntd
References
----------
[1] Webb, C.O. 2000. Exploring the phylogenetic structure of
ecological communities: An example for rainforest trees. The
American Naturalist 156: 145-155.
[2] Swenson, N.G. Functional and Phylogenetic Ecology in R.
"""
comparison_regime = self._get_taxon_to_all_other_taxa_comparisons(filter_fn=filter_fn)
return self._calculate_mean_nearest_taxon_distance(
comparison_regime=comparison_regime,
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,)
[docs]
def standardized_effect_size_mean_pairwise_distance(self,
assemblage_memberships,
num_randomization_replicates=1000,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
is_skip_single_taxon_assemblages=False,
null_model_type="taxa.label",
rng=None):
r"""
Returns the standardized effect size value for the MPD statistic under
a null model under various community compositions.
The S.E.S. is given by:
.. math::
SES(statistic) = \frac{observed - mean(model_{null})}{sd(model_{null})}
This removes any bias associated with the decrease in variance in the
MPD statistic value as species richness increases to the point where
communities become saturated. Equivalent to -1 times the Nearest
Relative Index (NRI) when using phylogenetic distances.
In contrast to the function calculating the non-standardized effect
size version of this statistic, which uses filter function to specify
the subset of taxa to be considerd, here a collection of (multiple)
sets of taxa constituting a community is specified. This to allow
calculation of the null model statistic across all community sets for
each randomization replicate.
Parameters
----------
assemblage_memberships : iterable of iterable of |Taxon| objects
A collection of collections, e.g. a list of sets, with the elements
of each set being |Taxon| instances. Each set specifies the
composition of a community. The standardized effect size of this
statistic will be calculated for each community as specified by a
set of |Taxon| instances.
num_randomization_replicates : int
Number of randomization replicates.
is_weighted_edge_distances: bool
If ``True`` then edge lengths will be considered for distances.
Otherwise, just the number of edges.
Returns
-------
r : list of results
A list of results, with each result corresponding to a community
set given in ``assemblage_memberships``. Each result consists of a named
tuple with the following elements:
- obs : the observed value of the statistic
- null_model_mean : the mean value of the statistic under the null
model
- null_model_sd : the standard deviation of the statistic under
the null model
- z : the standardized effect value of the statistic
(= SES as defined in [1] above)
- p : the p-value of the observed value of the
Examples
--------
::
import dendropy
tree = dendropy.Tree.get_from_path(
src="data/community.tree.newick",
schema="newick",
rooting="force-rooted")
pdm = tree.phylogenetic_distance_matrix()
assemblage_membership_definitions = pdm.assemblage_membership_definitions_from_csv("data/comm1.csv")
results = pdm.standardized_effect_size_mean_pairwise_distance(assemblage_memberships=assemblage_membership_definitions.values())
print(results)
"""
if assemblage_memberships is None:
assemblage_memberships = [ set(self._mapped_taxa) ]
comparison_regimes = []
for idx, assemblage_membership in enumerate(assemblage_memberships):
if len(assemblage_membership) == 1:
if is_skip_single_taxon_assemblages:
continue
else:
raise error.SingleTaxonAssemblageException("{}: {}".format(idx, assemblage_membership))
filter_fn = lambda taxon: taxon in assemblage_membership
comparison_regime = list(self.distinct_taxon_pair_iter(filter_fn=filter_fn))
comparison_regimes.append(comparison_regime)
results = self._calculate_standardized_effect_size(
statisticf_name="_calculate_mean_pairwise_distance",
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
comparison_regimes=comparison_regimes,
null_model_type=null_model_type,
num_randomization_replicates=num_randomization_replicates,
rng=rng)
return results
[docs]
def standardized_effect_size_mean_nearest_taxon_distance(self,
assemblage_memberships,
num_randomization_replicates=1000,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False,
is_skip_single_taxon_assemblages=False,
null_model_type="taxa.label",
rng=None):
r"""
Returns the standardized effect size value for the MNTD statistic under
a null model under various community compositions.
The S.E.S. is given by:
.. math::
SES(statistic) = \frac{observed - mean(model_{null})}{sd(model_{null})}
This removes any bias associated with the decrease in variance in the
MPD statistic value as species richness increases to the point where
communities become saturated. Equivalent to -1 times the Nearest Taxon
Index when using phylogenetic distances.
In contrast to the function calculating the non-standardized effect
size version of this statistic, which uses filter function to specify
the subset of taxa to be considerd, here a collection of (multiple)
sets of taxa constituting a community is specified. This to allow
calculation of the null model statistic across all community sets for
each randomization replicate.
Parameters
----------
assemblage_memberships : iterable of iterable of |Taxon| objects
A collection of collections, e.g. a list of sets, with the elements
of each set being |Taxon| instances. Each set specifies the
composition of a community. The standardized effect size of this
statistic will be calculated for each community as specified by a
set of |Taxon| instances.
num_randomization_replicates : int
Number of randomization replicates.
is_weighted_edge_distances: bool
If ``True`` then edge lengths will be considered for distances.
Otherwise, just the number of edges.
Returns
-------
r : list of results
A list of results, with each result corresponding to a community
set given in ``assemblage_memberships``. Each result consists of a named
tuple with the following elements:
- obs : the observed value of the statistic
- null_model_mean : the mean value of the statistic under the null
model
- null_model_sd : the standard deviation of the statistic under
the null model
- z : the standardized effect value of the statistic
(= SES as defined in [1] above)
- p : the p-value of the observed value of the
statistic under the null model.
Examples
--------
::
import dendropy
tree = dendropy.Tree.get_from_path(
src="data/community.tree.newick",
schema="newick",
rooting="force-rooted")
pdm = dendropy.PhylogeneticDistanceMatrix.from_tree(tree)
assemblage_memberships = pdm.assemblage_membership_definitions_from_csv("data/comm1.csv")
results = pdm.standardized_effect_size_mean_nearest_taxon_distance(assemblage_memberships=assemblage_memberships)
print(results)
"""
if assemblage_memberships is None:
assemblage_memberships = [ set(self._mapped_taxa) ]
comparison_regimes = []
for idx, assemblage_membership in enumerate(assemblage_memberships):
if len(assemblage_membership) == 1:
if is_skip_single_taxon_assemblages:
continue
else:
raise error.SingleTaxonAssemblageException("{}: {}".format(idx, assemblage_membership))
filter_fn = lambda taxon: taxon in assemblage_membership
comparison_regime = self._get_taxon_to_all_other_taxa_comparisons(filter_fn=filter_fn)
comparison_regimes.append(comparison_regime)
results = self._calculate_standardized_effect_size(
statisticf_name="_calculate_mean_nearest_taxon_distance",
comparison_regimes=comparison_regimes,
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
null_model_type=null_model_type,
num_randomization_replicates=num_randomization_replicates,
rng=rng)
return results
[docs]
def shuffle_taxa(self,
is_shuffle_phylogenetic_distances=True,
is_shuffle_phylogenetic_path_steps=True,
is_shuffle_mrca=True,
rng=None):
"""
Randomly shuffles taxa in-situ.
"""
if rng is None:
rng = GLOBAL_RNG
reordered_taxa = list(self._mapped_taxa)
rng.shuffle(reordered_taxa)
current_to_shuffled_taxon_map = dict(zip(self._mapped_taxa, reordered_taxa))
to_shuffle = []
if is_shuffle_phylogenetic_distances:
to_shuffle.append("_taxon_phylogenetic_distances")
if is_shuffle_phylogenetic_path_steps:
to_shuffle.append("_taxon_phylogenetic_path_steps")
if is_shuffle_mrca:
to_shuffle.append("_mrca")
for attr_name in to_shuffle:
src = getattr(self, attr_name)
dest = {}
## 5m8.076s
# for t1, t2 in self._all_distinct_mapped_taxa_pairs:
# x1 = current_to_shuffled_taxon_map[t1]
# x2 = current_to_shuffled_taxon_map[t2]
# d = src[t1][t2]
# try:
# dest[x1][x2] = d
# except KeyError:
# dest[x1] = {x2: d}
# if t1 in src[t1]:
# dest[x1][x1] = src[t1][t1]
# try:
# dest[x2][x1] = d
# except KeyError:
# dest[x2] = {x1: d}
# if t2 in src[t2]:
# dest[x2][x2] = src[t2][t2]
# setattr(self, attr_name, dest)
# 4m48.025s
for t1 in src:
x1 = current_to_shuffled_taxon_map[t1]
dest[x1] = {}
for t2 in src[t1]:
x2 = current_to_shuffled_taxon_map[t2]
dest[x1][x2] = src[t1][t2]
setattr(self, attr_name, dest)
return current_to_shuffled_taxon_map
[docs]
def nj_tree(self,
is_weighted_edge_distances=True,
tree_factory=None,
):
"""
Returns an Neighbor-Joining (NJ) tree based on the distances in the matrix.
Calculates and returns a tree under the Neighbor-Joining algorithm of
Saitou and Nei (1987) for the data in the matrix.
Parameters
----------
is_weighted_edge_distances: bool
If ``True`` then edge lengths will be considered for distances.
Otherwise, just the number of edges.
Returns
-------
t : |Tree|
A |Tree| instance corresponding to the Neighbor-Joining (NJ) tree
for this data.
Examples
--------
::
import dendropy
# Read data from a CSV file into a PhylogeneticDistanceMatrix
# object
with open("distance_matrix.csv") as src:
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
src,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True,
delimiter=",",
)
# Calculate the tree
nj_tree = pdm.nj_tree()
# Print it
print(nj_tree.as_string("nexus"))
References
----------
Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution,
4: 406-425.
"""
if is_weighted_edge_distances:
original_dmatrix = self._taxon_phylogenetic_distances
else:
original_dmatrix = self._taxon_phylogenetic_path_steps
if tree_factory is None:
tree_factory = dendropy.Tree
tree = tree_factory(taxon_namespace=self.taxon_namespace)
tree.is_rooted = False
# initialize node pool
node_pool = []
for t1 in self._mapped_taxa:
nd = tree.node_factory()
nd.taxon = t1
nd._nj_distances = {}
node_pool.append(nd)
# initialize factor
n = len(self._mapped_taxa)
# cache calculations
for nd1 in node_pool:
nd1._nj_xsub = 0.0
for nd2 in node_pool:
if nd1 is nd2:
continue
d = original_dmatrix[nd1.taxon][nd2.taxon]
nd1._nj_distances[nd2] = d
nd1._nj_xsub += d
while n > 1:
# calculate the Q-matrix
min_q = None
nodes_to_join = None
for idx1, nd1 in enumerate(node_pool[:-1]):
for idx2, nd2 in enumerate(node_pool[idx1+1:]):
v1 = (n - 2) * nd1._nj_distances[nd2]
qvalue = v1 - nd1._nj_xsub - nd2._nj_xsub
if min_q is None or qvalue < min_q:
min_q = qvalue
nodes_to_join = (nd1, nd2)
# create the new node
new_node = tree.node_factory()
# attach it to the tree
for node_to_join in nodes_to_join:
new_node.add_child(node_to_join)
node_pool.remove(node_to_join)
# calculate the distances for the new node
new_node._nj_distances = {}
new_node._nj_xsub = 0.0
for node in node_pool:
# actual node-to-node distances
v1 = 0.0
for node_to_join in nodes_to_join:
v1 += node._nj_distances[node_to_join]
v3 = nodes_to_join[0]._nj_distances[nodes_to_join[1]]
dist = 0.5 * (v1 - v3)
new_node._nj_distances[node] = dist
node._nj_distances[new_node] = dist
# Adjust/recalculate the values needed for the Q-matrix
# calculations
new_node._nj_xsub += dist
node._nj_xsub += dist
for node_to_join in nodes_to_join:
node._nj_xsub -= node_to_join._nj_distances[node]
# calculate the branch lengths
if n > 2:
v1 = 0.5 * nodes_to_join[0]._nj_distances[nodes_to_join[1]]
v4 = 1.0/(2*(n-2)) * (nodes_to_join[0]._nj_xsub - nodes_to_join[1]._nj_xsub)
delta_f = v1 + v4
delta_g = nodes_to_join[0]._nj_distances[nodes_to_join[1]] - delta_f
nodes_to_join[0].edge.length = delta_f
nodes_to_join[1].edge.length = delta_g
else:
d = nodes_to_join[0]._nj_distances[nodes_to_join[1]]
nodes_to_join[0].edge.length = d / 2
nodes_to_join[1].edge.length = d / 2
# clean up
for node_to_join in nodes_to_join:
del node_to_join._nj_distances
del node_to_join._nj_xsub
# add the new node to the pool of nodes
node_pool.append(new_node)
# adjust count
n -= 1
tree.seed_node = node_pool[0]
del tree.seed_node._nj_distances
del tree.seed_node._nj_xsub
return tree
[docs]
def upgma_tree(self,
is_weighted_edge_distances=True,
tree_factory=None,
):
"""
Returns an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) tree
based on the distances in the matrix.
Parameters
----------
is_weighted_edge_distances: bool
If ``True`` then edge lengths will be considered for distances.
Otherwise, just the number of edges.
Returns
-------
t : |Tree|
A |Tree| instance corresponding to the UPGMA tree
for this data.
Examples
--------
::
import dendropy
# Read data from a CSV file into a PhylogeneticDistanceMatrix
# object
with open("distance_matrix.csv") as src:
pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
src,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_allow_new_taxa=True,
delimiter=",",
)
# Calculate the tree
upgma_tree = pdm.upgma_tree()
# Print it
print(upgma_tree.as_string("nexus"))
"""
if is_weighted_edge_distances:
original_dmatrix = self._taxon_phylogenetic_distances
else:
original_dmatrix = self._taxon_phylogenetic_path_steps
if tree_factory is None:
tree_factory = dendropy.Tree
tree = tree_factory(taxon_namespace=self.taxon_namespace)
tree.is_rooted = True
node_pool = []
for t1 in self._mapped_taxa:
nd = tree.node_factory()
nd.taxon = t1
nd._upgma_cluster = set([nd])
nd._upgma_distance_from_tip = 0.0
nd._upgma_distances = {}
node_pool.append(nd)
for idx1, nd1 in enumerate(node_pool[:-1]):
for idx2, nd2 in enumerate(node_pool[idx1+1:]):
d = original_dmatrix[nd1.taxon][nd2.taxon]
nd1._upgma_distances[nd2] = d
nd2._upgma_distances[nd1] = d
while len(node_pool) > 1:
min_distance = None
nodes_to_join = None
for idx1, nd1 in enumerate(node_pool[:-1]):
for idx2, nd2 in enumerate(node_pool[idx1+1:]):
d = nd1._upgma_distances[nd2]
if min_distance is None or d < min_distance:
nodes_to_join = (nd1, nd2)
min_distance = d
new_node = tree.node_factory()
new_node._upgma_cluster = set()
new_node._upgma_distances = {}
elen = min_distance / 2.0
for node_to_join in nodes_to_join:
new_node.add_child(node_to_join)
new_node._upgma_cluster.update(node_to_join._upgma_cluster)
node_to_join.edge.length = elen - node_to_join._upgma_distance_from_tip
node_pool.remove(node_to_join)
new_node._upgma_distance_from_tip = nodes_to_join[0].edge.length + nodes_to_join[0]._upgma_distance_from_tip
for idx1, nd1 in enumerate(node_pool):
d1 = 0.0
count = 0.0
for node_to_join in nodes_to_join:
d2 = node_to_join._upgma_distances[nd1]
xc = len(node_to_join._upgma_cluster)
d1 += (d2 * xc)
count += xc
d = d1 / count
nd1._upgma_distances[new_node] = d
new_node._upgma_distances[nd1] = d
for node_to_join in nodes_to_join:
del node_to_join._upgma_cluster
del node_to_join._upgma_distance_from_tip
del node_to_join._upgma_distances
node_pool.append(new_node)
tree.seed_node = node_pool[0]
del tree.seed_node._upgma_cluster
del tree.seed_node._upgma_distance_from_tip
del tree.seed_node._upgma_distances
return tree
[docs]
def as_data_table(self, is_weighted_edge_distances=True):
"""
Returns this as a table.
"""
if is_weighted_edge_distances:
df = self.patristic_distance
else:
df = self.path_edge_count
dt = container.DataTable()
for t1 in self._mapped_taxa:
dt.add_row(row_name=t1.label)
dt.add_column(column_name=t1.label)
for t1 in self._mapped_taxa:
for t2 in self._mapped_taxa:
dt[t1.label, t2.label] = df(t1, t2)
return dt
def write_csv(self,
out,
is_first_row_column_names=True,
is_first_column_row_names=True,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=True,
label_transform_fn=None,
**csv_writer_kwargs
):
if isinstance(out, str):
dest = open(out, "w")
else:
dest = out
if label_transform_fn is None:
label_transform_fn = lambda x: x
dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
)
if "delimiter" not in csv_writer_kwargs:
csv_writer_kwargs["delimiter"] = ","
writer = csv.writer(dest, csv_writer_kwargs)
if is_first_row_column_names:
row = []
if is_first_column_row_names:
row.append("")
for taxon in self._mapped_taxa:
row.append(label_transform_fn(taxon.label))
writer.writerow(row)
# dest.write(delimiter.join(row))
# dest.write("\n")
for taxon1 in self._mapped_taxa:
row = []
if is_first_column_row_names:
row.append(label_transform_fn(taxon1.label))
for taxon2 in self._mapped_taxa:
d = dmatrix[taxon1][taxon2] / normalization_factor
row.append("{}".format(d))
writer.writerow(row)
# dest.write(delimiter.join(row))
# dest.write("\n")
[docs]
def assemblage_membership_definitions_from_csv(
self,
src,
default_data_type=float,
**csv_reader_kwargs):
"""
Convenience method to return list of community sets from a delimited
file that lists taxon (labels) in columns and community
presence/absences or abundances in rows.
"""
if isinstance(src, str):
with open(src) as srcf:
data_table = container.DataTable.from_csv(
src,
default_data_type=default_data_type,
**csv_reader_kwargs
)
else:
data_table = container.DataTable.from_csv(
src,
default_data_type=default_data_type,
**csv_reader_kwargs
)
mapped_taxon_labels = set([taxon.label for taxon in self.taxon_iter()])
for column_name in data_table.column_name_iter():
assert column_name in mapped_taxon_labels
assemblage_memberships = collections.OrderedDict()
for row_name in data_table.row_name_iter():
assemblage_membership = set()
for taxon in self.taxon_iter():
if data_table[row_name, taxon.label] > 0:
assemblage_membership.add(taxon)
assemblage_memberships[row_name] = assemblage_membership
return assemblage_memberships
def _get_taxon_to_all_other_taxa_comparisons(self, filter_fn=None):
permutations = collections.defaultdict(list)
for taxon1 in self._mapped_taxa:
# permutations[taxon1] = []
if filter_fn and not filter_fn(taxon1):
continue
for taxon2 in self._mapped_taxa:
if taxon1 is taxon2:
continue
if filter_fn and not filter_fn(taxon2):
continue
permutations[taxon1].append(taxon2)
return permutations
def _get_distance_matrix_and_normalization_factor(self,
is_weighted_edge_distances,
is_normalize_by_tree_size):
if is_weighted_edge_distances:
dmatrix = self._taxon_phylogenetic_distances
if is_normalize_by_tree_size:
normalization_factor = self._tree_length
else:
normalization_factor = 1.0
else:
dmatrix = self._taxon_phylogenetic_path_steps
if is_normalize_by_tree_size:
normalization_factor = float(self._num_edges)
else:
normalization_factor = 1.0
return dmatrix, normalization_factor
def _calculate_mean_pairwise_distance(self,
comparison_regime,
is_weighted_edge_distances,
is_normalize_by_tree_size):
dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,)
distances = []
for taxon1, taxon2 in comparison_regime:
distances.append(dmatrix[taxon1][taxon2])
if distances:
return (sum(distances) / normalization_factor) / (len(distances) * 1.0)
else:
raise error.NullAssemblageException("No taxa in assemblage")
def _calculate_mean_nearest_taxon_distance(self,
comparison_regime,
is_weighted_edge_distances,
is_normalize_by_tree_size):
dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,)
distances = []
for taxon1 in comparison_regime:
# subdistances = [dmatrix[taxon1][taxon2] for taxon2 in comparison_regime[taxon1]]
# distances.append(min(subdistances))
min_distance = dmatrix[taxon1][comparison_regime[taxon1][0]]
for taxon2 in comparison_regime[taxon1][1:]:
d = dmatrix[taxon1][taxon2]
if d < min_distance:
min_distance = d
distances.append(min_distance)
if distances:
return (sum(distances) / normalization_factor) / (len(distances) * 1.0)
else:
raise error.NullAssemblageException("No taxa in assemblage")
def _calculate_standardized_effect_size(self,
statisticf_name,
comparison_regimes,
is_weighted_edge_distances,
is_normalize_by_tree_size,
null_model_type="taxa.label",
num_randomization_replicates=1000,
rng=None):
result_type = collections.namedtuple("PhylogeneticCommunityStandardizedEffectSizeStatisticCalculationResult",
["obs", "null_model_mean", "null_model_sd", "z", "rank", "p",])
statisticf_kwargs={
"is_weighted_edge_distances": is_weighted_edge_distances,
"is_normalize_by_tree_size": is_normalize_by_tree_size
}
observed_stat_values = {}
null_model_stat_values = {}
null_model_matrix = self.clone()
assert null_model_matrix == self
if is_weighted_edge_distances:
is_shuffle_phylogenetic_distances = True
is_shuffle_phylogenetic_path_steps = False
else:
is_shuffle_phylogenetic_distances = False
is_shuffle_phylogenetic_path_steps = True
for rep_idx in range(num_randomization_replicates):
null_model_matrix.shuffle_taxa(
is_shuffle_phylogenetic_distances=is_shuffle_phylogenetic_distances,
is_shuffle_phylogenetic_path_steps=is_shuffle_phylogenetic_distances,
is_shuffle_mrca=False,
rng=rng)
for comparison_regime_idx, comparison_regime in enumerate(comparison_regimes):
statisticf_kwargs["comparison_regime"] = comparison_regime
if rep_idx == 0:
observed_stat_values[comparison_regime_idx] = getattr(self, statisticf_name)(**statisticf_kwargs)
null_model_stat_values[comparison_regime_idx] = []
stat_value = getattr(null_model_matrix, statisticf_name)(**statisticf_kwargs)
null_model_stat_values[comparison_regime_idx].append(stat_value)
results = []
for comparison_regime_idx, comparison_regime in enumerate(comparison_regimes):
obs_value = observed_stat_values[comparison_regime_idx]
stat_values = null_model_stat_values[comparison_regime_idx]
null_model_mean, null_model_var = statistics.mean_and_sample_variance(stat_values)
rank = statistics.rank(
value_to_be_ranked=obs_value,
value_providing_rank=stat_values)
if null_model_var > 0:
null_model_sd = math.sqrt(null_model_var)
z = (obs_value - null_model_mean) / null_model_sd
else:
null_model_sd = 0.0
z = None
p = float(rank) / len(stat_values)
result = result_type(
obs=obs_value,
null_model_mean=null_model_mean,
null_model_sd=null_model_sd,
z=z,
rank=rank,
p=p)
results.append(result)
return results
class NodeDistanceMatrix(object):
@classmethod
def from_tree(cls, tree):
ndm = cls()
ndm.compile_from_tree(tree=tree)
return ndm
def __init__(self):
self.clear()
def clear(self):
self._tree_length = None
self._num_edges = None
self._node_phylogenetic_distances = {}
self._node_phylogenetic_path_steps = {}
self._mrca = {}
def compile_from_tree(self, tree):
self.clear()
self._tree_length = 0.0
self._num_edges = 0
for node1 in tree.postorder_node_iter():
try:
self._tree_length += node1.edge.length
except TypeError: # None for edge length
pass
self._num_edges += 1
if node1 not in self._node_phylogenetic_distances:
self._node_phylogenetic_distances[node1] = {node1: 0.0}
self._node_phylogenetic_path_steps[node1] = {node1: 0}
self._mrca[node1] = {node1: node1}
children = node1.child_nodes()
for ch_idx, ch1 in enumerate(children):
ch1_elen = ch1.edge.length if ch1.edge.length is not None else 0.0
for ch1_subtree_node in list(self._node_phylogenetic_distances[ch1].keys()):
if ch1_subtree_node not in self._node_phylogenetic_distances[node1]:
d = self._node_phylogenetic_distances[ch1][ch1_subtree_node] + ch1_elen
d2 = self._node_phylogenetic_path_steps[ch1][ch1_subtree_node] + 1
self._node_phylogenetic_distances[node1][ch1_subtree_node] = d
self._node_phylogenetic_distances[ch1_subtree_node][node1] = d
self._node_phylogenetic_path_steps[node1][ch1_subtree_node] = d2
self._node_phylogenetic_path_steps[ch1_subtree_node][node1] = d2
self._node_phylogenetic_distances[node1][ch1] = ch1_elen
self._node_phylogenetic_distances[ch1][node1] = ch1_elen
self._node_phylogenetic_path_steps[node1][ch1] = 1
self._node_phylogenetic_path_steps[ch1][node1] = 1
for ch2 in children[ch_idx+1:]:
self._mrca[ch1][ch2] = node1
self._mrca[ch2][ch1] = node1
ch2_elen = ch2.edge.length if ch2.edge.length is not None else 0.0
d = ch1_elen + ch2_elen
self._node_phylogenetic_distances[ch1][ch2] = d
self._node_phylogenetic_distances[ch2][ch1] = d
self._node_phylogenetic_path_steps[ch1][ch2] = 2
self._node_phylogenetic_path_steps[ch2][ch1] = 2
# Below is ugly, ugly, ugly. Basic idea is to link nodes of each
# the subtrees of each of the child nodes of node1. Assumes
# that any pairwise comparison of nodes descending from node1
# (as given by nodes in a pairwise comparison with node1) not
# already made have their MRCA at node1.
for snd1 in self._node_phylogenetic_distances[node1]:
for snd2 in self._node_phylogenetic_distances[node1]:
if snd1 is snd2:
continue
if snd1 not in self._node_phylogenetic_distances:
self._node_phylogenetic_distances[snd1] = {}
self._node_phylogenetic_path_steps[snd1] = {}
if snd2 not in self._node_phylogenetic_distances:
self._node_phylogenetic_distances[snd2] = {}
self._node_phylogenetic_path_steps[snd2] = {}
if snd2 not in self._node_phylogenetic_distances[snd1]:
self._node_phylogenetic_distances[snd1][snd2] = self._node_phylogenetic_distances[node1][snd1] + self._node_phylogenetic_distances[node1][snd2]
self._node_phylogenetic_path_steps[snd1][snd2] = self._node_phylogenetic_path_steps[node1][snd1] + self._node_phylogenetic_path_steps[node1][snd2]
if snd1 not in self._node_phylogenetic_distances[snd2]:
self._node_phylogenetic_distances[snd2][snd1] = self._node_phylogenetic_distances[node1][snd1] + self._node_phylogenetic_distances[node1][snd2]
self._node_phylogenetic_path_steps[snd2][snd1] = self._node_phylogenetic_path_steps[node1][snd1] + self._node_phylogenetic_path_steps[node1][snd2]
if snd1 not in self._mrca:
self._mrca[snd1] = {}
if snd2 not in self._mrca:
self._mrca[snd2] = {}
if snd2 not in self._mrca[snd1]:
self._mrca[snd1][snd2] = node1
self._mrca[snd2][snd1] = node1
def __eq__(self, o):
if self.node_namespace is not o.node_namespace:
return False
return (True
and (self._node_phylogenetic_distances == o._node_phylogenetic_distances)
and (self._node_phylogenetic_path_steps == o._node_phylogenetic_path_steps)
and (self._mrca == o._mrca)
and (self._tree_length == o._tree_length)
and (self._num_edges == o._num_edges)
)
def __iter__(self):
for node in self._node_phylogenetic_distances:
yield node
def __hash__(self):
return id(self)
def __call__(self, node1, node2):
return self.patristic_distance(node1, node2)
def __copy__(self):
return self.clone()
def clone(self):
o = self.__class__()
o._tree_length = self._tree_length
o._num_edges = self._num_edges
for src, dest in (
(self._node_phylogenetic_distances, o._node_phylogenetic_distances,),
(self._node_phylogenetic_path_steps, o._node_phylogenetic_path_steps,),
(self._mrca, o._mrca,),
):
for t1 in src:
dest[t1] = {}
for t2 in src[t1]:
dest[t1][t2] = src[t1][t2]
return o
def mrca(self, node1, node2):
"""
Returns MRCA of two node objects.
"""
return self._mrca[node1][node2]
def distance(self,
node1,
node2,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
"""
Returns distance between node1 and node2.
"""
if is_weighted_edge_distances:
return self.patristic_distance(node1, node2, is_normalize_by_tree_size=is_normalize_by_tree_size)
else:
return self.path_edge_count(node1, node2, is_normalize_by_tree_size=is_normalize_by_tree_size)
def patristic_distance(self, node1, node2, is_normalize_by_tree_size=False):
"""
Returns patristic distance between two node objects.
"""
if node1 is node2:
return 0.0
d = self._node_phylogenetic_distances[node1][node2]
if is_normalize_by_tree_size:
return d / self._tree_length
else:
return d
def path_edge_count(self, node1, node2, is_normalize_by_tree_size=False):
"""
Returns the number of edges between two node objects.
"""
if node1 is node2:
return 0
d = self._node_phylogenetic_path_steps[node1][node2]
if is_normalize_by_tree_size:
return float(d) / self._num_edges
else:
return d
def distances(self,
is_weighted_edge_distances=True,
is_normalize_by_tree_size=False):
"""
Returns list of patristic distances.
"""
dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
is_weighted_edge_distances=is_weighted_edge_distances,
is_normalize_by_tree_size=is_normalize_by_tree_size,
)
results = []
nodes = list(dmatrix.keys())
for node_idx1, node1 in enumerate(nodes[:-1]):
for node_idx2, node2 in enumerate(nodes[node_idx1+1:]):
results.append(dmatrix[node1][node2]/normalization_factor)
return results
def _get_distance_matrix_and_normalization_factor(self,
is_weighted_edge_distances,
is_normalize_by_tree_size):
if is_weighted_edge_distances:
dmatrix = self._node_phylogenetic_distances
if is_normalize_by_tree_size:
normalization_factor = self._tree_length
else:
normalization_factor = 1.0
else:
dmatrix = self._node_phylogenetic_path_steps
if is_normalize_by_tree_size:
normalization_factor = float(self._num_edges)
else:
normalization_factor = 1.0
return dmatrix, normalization_factor